scispace - formally typeset
Search or ask a question
Author

Carrie M. Nielson

Other affiliations: University of Arizona
Bio: Carrie M. Nielson is an academic researcher from Oregon Health & Science University. The author has contributed to research in topics: HPV infection & Bone density. The author has an hindex of 27, co-authored 31 publications receiving 4525 citations. Previous affiliations of Carrie M. Nielson include University of Arizona.

Papers
More filters
Journal ArticleDOI
TL;DR: HPV infection is highly prevalent in sexually active men and can be detected by use of a variety of specimens and methods, including site- or specimen-specific HPV DNA detection.
Abstract: BACKGROUND Human papillomavirus (HPV) infection is estimated to be the most common sexually transmitted infection; an estimated 62 million persons are newly infected every year in the United States There are limited data on HPV infection in heterosexual men METHODS We conducted a systematic review of the literature by searching MEDLINE using the terms "human papillomavirus," "HPV," "male," "seroprevalence," and "serology" to retrieve articles published from 1 January 1990 to 1 February 2006 We included studies that had data on population characteristics and that evaluated male genital anatomic sites or specimens for HPV DNA or included assessments of seropositivity to HPV type 6, 11, 16, or 18 in men We excluded studies that had been conducted only in children or immunocompromised persons (HIV infected, transplant recipients, or elderly) RESULTS We included a total of 40 publications on HPV DNA detection and risk factors for HPV in men; 27 evaluated multiple anatomic sites or specimens, 10 evaluated a single site or specimen, and 3 evaluated risk factors or optimal anatomic sites/specimens for HPV detection Twelve studies assessed site- or specimen-specific HPV DNA detection HPV prevalence in men was 13%-729% in studies in which multiple anatomic sites or specimens were evaluated; 15 (56%) of these studies reported > or =20% HPV prevalence HPV prevalence varied on the basis of sampling, processing methods, and the anatomic site(s) or specimen(s) sampled We included 15 publications reporting HPV seroprevalence Rates of seropositivity depended on the population, HPV type, and methods used In 9 studies that evaluated both men and women, all but 1 demonstrated that HPV seroprevalence was lower in men than in women CONCLUSION HPV infection is highly prevalent in sexually active men and can be detected by use of a variety of specimens and methods There have been few natural-history studies and no transmission studies of HPV in men The information that we have reviewed may be useful for future natural-history studies and for modeling the potential impact of a prophylactic HPV vaccine

590 citations

Journal ArticleDOI
Hou-Feng Zheng1, Vincenzo Forgetta1, Yi-Hsiang Hsu2, Yi-Hsiang Hsu3  +171 moreInstitutions (55)
01 Oct 2015-Nature
TL;DR: Evidence is provided that low‐frequency non‐coding variants have large effects on BMD and fracture, thereby providing rationale for whole‐genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.
Abstract: The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF ≤ 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants, as well as rare, population-specific, coding variants. Here we identify novel non-coding genetic variants with large effects on BMD (ntotal = 53,236) and fracture (ntotal = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD (rs11692564(T), MAF = 1.6%, replication effect size = +0.20 s.d., Pmeta = 2 × 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 × 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1(cre/flox) mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low-frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size = +0.41 s.d., Pmeta = 1 × 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.

410 citations

Journal ArticleDOI
TL;DR: It is hypothesized that binding to DBP impairs delivery of 25OHD to the vitamin D-activating enzyme 1α-hydroxylase in some target cells, and the merits of 'free25OHD' as an alternative marker of vitamin D status are discussed, particularly in the context of non-classical responses to vitamin D.

360 citations

Journal ArticleDOI
TL;DR: Overall HPV prevalence was not associated with age, however, significant associations with age were observed when specific categories of HPV, nononcogenic, and unclassified HPV infections were considered.
Abstract: Male sexual behavior influences the rates of cervical dysplasia and invasive cervical cancer, as well as male human papillomavirus (HPV) infection and disease. Unfortunately, little is known regarding male HPV type distribution by age and across countries. In samples combined from the coronal sulcus, glans penis, shaft, and scrotum of 1,160 men from Brazil, Mexico, and the United States, overall HPV prevalence was 65.2%, with 12.0% oncogenic types only, 20.7% nononcogenic types only, 17.8% both oncogenic and nononcogenic, and 14.7% unclassified infections. Multiple HPV types were detected in 25.7% of study participants. HPV prevalence was higher in Brazil (72.3%) than in the United States (61.3%) and Mexico (61.9%). HPV16 (6.5%), HPV51 (5.3%), and HPV59 (5.3%) were the most commonly detected oncogenic infections, and HPV84 (7.7%), HPV62 (7.3%), and HPV6 (6.6%) were the most commonly detected nononcogenic infections. Overall HPV prevalence was not associated with age. However, significant associations with age were observed when specific categories of HPV, nononcogenic, and unclassified HPV infections were considered. Studies of HPV type distribution among a broad age range of men from multiple countries is needed to fill the information gap internationally with respect to our knowledge of HPV infection in men.

326 citations

Journal ArticleDOI
TL;DR: The ability of FE‐based biomechanical analysis of QCT scans to prospectively predict hip fractures in men is demonstrated and insight into hip fracture etiology is provided.
Abstract: Low areal BMD (aBMD) is associated with increased risk of hip fracture, but many hip fractures occur in persons without low aBMD. Finite element (FE) analysis of QCT scans provides a measure of hip strength. We studied the association of FE measures with risk of hip fracture in older men. A prospective case-cohort study of all first hip fractures (n = 40) and a random sample (n = 210) of nonfracture cases from 3549 community-dwelling men ≥65 yr of age used baseline QCT scans of the hip (mean follow-up, 5.6 yr). Analyses included FE measures of strength and load-to-strength ratio and BMD by DXA. Hazard ratios (HRs) for hip fracture were estimated with proportional hazards regression. Both femoral strength (HR per SD change = 13.1; 95% CI: 3.9–43.5) and the load-to-strength ratio (HR = 4.0; 95% CI: 2.7–6.0) were strongly associated with hip fracture risk, as was aBMD as measured by DXA (HR = 5.1; 95% CI: 2.8–9.2). After adjusting for age, BMI, and study site, the associations remained significant (femoral strength HR = 6.5, 95% CI: 2.3–18.3; load-to-strength ratio HR = 4.3, 95% CI: 2.5–7.4; aBMD HR = 4.4, 95% CI: 2.1–9.1). When adjusted additionally for aBMD, the load-to-strength ratio remained significantly associated with fracture (HR = 3.1, 95% CI: 1.6–6.1). These results provide insight into hip fracture etiology and demonstrate the ability of FE-based biomechanical analysis of QCT scans to prospectively predict hip fractures in men.

256 citations


Cited by
More filters
01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations

Journal ArticleDOI
Naomi R. Wray1, Stephan Ripke2, Stephan Ripke3, Stephan Ripke4  +259 moreInstitutions (79)
TL;DR: A genome-wide association meta-analysis of individuals with clinically assessed or self-reported depression identifies 44 independent and significant loci and finds important relationships of genetic risk for major depression with educational attainment, body mass, and schizophrenia.
Abstract: Major depressive disorder (MDD) is a common illness accompanied by considerable morbidity, mortality, costs, and heightened risk of suicide. We conducted a genome-wide association meta-analysis based in 135,458 cases and 344,901 controls and identified 44 independent and significant loci. The genetic findings were associated with clinical features of major depression and implicated brain regions exhibiting anatomical differences in cases. Targets of antidepressant medications and genes involved in gene splicing were enriched for smaller association signal. We found important relationships of genetic risk for major depression with educational attainment, body mass, and schizophrenia: lower educational attainment and higher body mass were putatively causal, whereas major depression and schizophrenia reflected a partly shared biological etiology. All humans carry lesser or greater numbers of genetic risk factors for major depression. These findings help refine the basis of major depression and imply that a continuous measure of risk underlies the clinical phenotype.

1,898 citations

01 Jan 2010
TL;DR: In this paper, the authors show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait, revealing patterns with important implications for genetic studies of common human diseases and traits.
Abstract: Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

1,751 citations