scispace - formally typeset
Search or ask a question
Author

Carsten Jenne

Bio: Carsten Jenne is an academic researcher from University of Wuppertal. The author has contributed to research in topics: Crystal structure & Radical. The author has an hindex of 14, co-authored 43 publications receiving 593 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Phosphane and N-heterocyclic carbene ligated gold(I) chlorides can be effectively activated by Na[Me3NB12Cl11] (1) under silver-free conditions and the capability of 1 in a previously unknown conversion of 5-silyloxy-1,6-allenynes was demonstrated.
Abstract: Phosphane and N-heterocyclic carbene ligated gold(I) chlorides can be effectively activated by Na[Me3NB12Cl11] (1) under silver-free conditions. This activation method with a weakly coordinating closo-dodecaborate anion was shown to be suitable for a large variety of reactions known to be catalyzed by homogeneous gold species, ranging from carbocyclizations to heterocyclizations. Additionally, the capability of 1 in a previously unknown conversion of 5-silyloxy-1,6-allenynes was demonstrated.

63 citations

Journal ArticleDOI
TL;DR: The perhalogenated closo-dodecaborate dianions [B12 X12 ](2-) are three-dimensional counterparts to the two-dimensional aromatics C6 X6 and showed a complex oxidation behavior in cyclic voltammetry experiments, presumably owing to decomposition of the cluster anion under release of iodide, which also explains the failure to isolate the respective radical by chemical oxidation.
Abstract: The perhalogenated closo-dodecaborate dianions [B12 X12 ](2-) (X=H, F, Cl, Br, I) are three-dimensional counterparts to the two-dimensional aromatics C6 X6 (X=H, F, Cl, Br, I). Whereas oxidation of the parent compounds [B12 H12 ](2-) and benzene does not lead to isolable radicals, the perhalogenated analogues can be oxidized by chemical or electrochemical methods to give stable radicals. The chemical oxidation of the closo-dodecaborate dianions [B12 X12 ](2-) with the strong oxidizer AsF5 in liquid sulfur dioxide (lSO2 ) yielded the corresponding radical anions [B12 X12 ](⋅-) (X=F, Cl, Br). The presence of radical ions was proven by EPR and UV/Vis spectroscopy and supported by quantum chemical calculations. Use of an excess amount of the oxidizing agent allowed the synthesis of the neutral perhalogenated hypercloso-boranes B12 X12 (X=Cl, Br). These compounds were characterized by single-crystal X-ray diffraction of dark blue B12 Cl12 and [Na(SO2 )6 ][B12 Br12 ]⋅B12 Br12 . Sublimation of the crude reaction products that contained B12 X12 (X=Cl, Br) resulted in pure dark blue B12 Cl12 or decomposition to red B9 Br9 , respectively. The energetics of the oxidation processes in the gas phase were calculated by DFT methods at the PBE0/def2-TZVPP level of theory. They revealed the trend of increasing ionization potentials of the [B12 X12 ](2-) dianions by going from fluorine to bromine as halogen substituent. The oxidation of all [B12 X12 ](2-) dianions was also studied in the gas phase by mass spectrometry in an ion trap. The electrochemical oxidation of the closo-dodecaborate dianions [B12 X12 ](2-) (X=F, Cl, Br, I) by cyclic and Osteryoung square-wave voltammetry in liquid sulfur dioxide or acetonitrile showed very good agreement with quantum chemical calculations in the gas phase. For [B12 X12 ](2-) (X=F, Cl, Br) the first and second oxidation processes are detected. Whereas the first process is quasi-reversible (with oxidation potentials in the range between +1.68 and +2.29 V (lSO2 , versus ferrocene/ferrocenium (Fc(0/+) ))), the second process is irreversible (with oxidation potentials ranging from +2.63 to +2.71 V (lSO2 , versus Fc(0/+) )). [B12 I12 ](2-) showed a complex oxidation behavior in cyclic voltammetry experiments, presumably owing to decomposition of the cluster anion under release of iodide, which also explains the failure to isolate the respective radical by chemical oxidation.

61 citations

Journal ArticleDOI
TL;DR: The facile preparation of the [Me3 NB12 Cl11 ](-) anion and its ideal chemical and physical properties make it a cheap alternative to other classes of weakly coordinating anions.
Abstract: The weakly coordinating anion [Me3 NB12 Cl11 ](-) has been prepared by a simple two-step procedure. The anion [Me3 NB12 Cl11 ](-) is easily obtained in batches of up to 20 g by chlorination of the known [H3 NB12 H11 ](-) anion with SbCl5 at about 190 °C and subsequent N-methylation with methyl iodide. Starting from Na[Me3 NB12 Cl11 ], several synthetically useful salts with reactive cations ([NO](+) , [Ph3 C](+) , and [(Et3 Si)2 H](+) ) were prepared. Full spectroscopic (NMR, IR, Raman, TGA, MS) characterization and single-crystal X-ray diffraction studies confirmed the identity and purity of the products. The thermal, chemical, and electrochemical stability as well as the basicity of the [Me3 NB12 Cl11 ](-) anion is similar to that of the structurally related weakly coordinating 1-carba-closo-dodecaborate and closo-dodecaborate anions. The facile preparation of the [Me3 NB12 Cl11 ](-) anion and its ideal chemical and physical properties make it a cheap alternative to other classes of weakly coordinating anions.

57 citations

Journal ArticleDOI
TL;DR: A concept for the rational design of anionic superelectrophiles that are composed of a strong electrophilic center firmly embedded in a negatively charged framework of exceptional stability is reported.
Abstract: Chemically binding to argon (Ar) at room temperature has remained the privilege of the most reactive electrophiles, all of which are cationic (or even dicationic) in nature. Herein, we report a concept for the rational design of anionic superelectrophiles that are composed of a strong electrophilic center firmly embedded in a negatively charged framework of exceptional stability. To validate our concept, we synthesized the percyano-dodecoborate [B 12 (CN) 12 ] 2− , the electronically most stable dianion ever investigated experimentally. It serves as a precursor for the generation of the monoanion [B 12 (CN) 11 ] − , which indeed spontaneously binds Ar at 298 K. Our mass spectrometric and spectroscopic studies are accompanied by high-level computational investigations including a bonding analysis of the exceptional B-Ar bond. The detection and characterization of this highly reactive, structurally stable anionic superelectrophile starts another chapter in the metal-free activation of particularly inert compounds and elements.

53 citations

Journal ArticleDOI
TL;DR: The unusual intrinsic electronic structure of the [B12X12]2- MCAs provides the basis for a molecular level understanding of their observed unique physical and chemical properties and a new paradigm for understanding the properties of these MCAs with not well-separated charges that departs from the prevailing model used for spatially separated charges.
Abstract: The stability and electron loss process of numerous multiply charged anions (MCAs) have been traditionally explained in terms of the classical Coulomb interaction between spatially separated charged groups. An understanding of these processes in MCAs with not well-separated excess charges is still lacking. We report the surprising properties and physical behavior of [B12X12]2–, X = F, Cl, Br, I, At, which are MCAs with not well-separated excess charges and cannot be described by the prevailing classical picture. In this series of MCAs, comprising a “boron core” surrounded by a “halogen shell”, the sign of the total charge in these two regions changes along the halogen series from X = F–At. With the aid of experimental photoelectron spectroscopy and highly correlated ab initio electronic structure calculations, we demonstrate that the trend in the electronic stability of these MCAs is determined by the interplay between the Coulomb (de)stabilization originating from the “boron core” and “halogen shell” and...

51 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
10 Mar 1970

8,159 citations

01 Feb 1995
TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

1,652 citations

Journal ArticleDOI
TL;DR: Gold(I) complexes selectively activate π-bonds of alkenes in complex molecular settings, which has been attributed to relativistic effects as discussed by the authors, and are the most effective catalysts for the electrophilic activation of alkynes under homogeneous conditions.
Abstract: 1.1. General Reactivity of Alkyne-Gold(I) Complexes For centuries, gold had been considered a precious, purely decorative inert metal. It was not until 1986 that Ito and Hayashi described the first application of gold(I) in homogeneous catalysis.1 More than one decade later, the first examples of gold(I) activation of alkynes were reported by Teles2 and Tanaka,3 revealing the potential of gold(I) in organic synthesis. Now, gold(I) complexes are the most effective catalysts for the electrophilic activation of alkynes under homogeneous conditions, and a broad range of versatile synthetic tools have been developed for the construction of carbon–carbon or carbon–heteroatom bonds. Gold(I) complexes selectively activate π-bonds of alkynes in complex molecular settings,4−10 which has been attributed to relativistic effects.11−13 In general, no other electrophilic late transition metal shows the breadth of synthetic applications of homogeneous gold(I) catalysts, although in occasions less Lewis acidic Pt(II) or Ag(I) complexes can be used as an alternative,9,10,14,15 particularly in the context of the activation of alkenes.16,17 Highly electrophilic Ga(III)18−22 and In(III)23,24 salts can also be used as catalysts, although often higher catalyst loadings are required. In general, the nucleophilic Markovnikov attack to η2-[AuL]+-activated alkynes 1 forms trans-alkenyl-gold complexes 2 as intermediates (Scheme 1).4,5a,9,10,12,25−29 This activation mode also occurs in gold-catalyzed cycloisomerizations of 1,n-enynes and in hydroarylation reactions, in which the alkene or the arene act as the nucleophile. Scheme 1 Anti-Nucleophilic Attack to η2-[AuL]+-Activated Alkynes

1,260 citations

Journal ArticleDOI
TL;DR: This review deals with the redox properties and photoluminescence behavior of this collection of compounds, as well as their influence on the properties of materials and devices whose working principles are related to electron-transfer or electron-promotion phenomena.
Abstract: Icosahedral boranes, carboranes, and metallacarboranes are extraordinarily robust compounds with desirable properties such as thermal and redox stability, chemical inertness, low nucleophilicity, and high hydrophobicity, making them attractive for several applications such as medicine, nanomaterials, molecular electronics, energy, catalysis, environmental chemistry, and other areas. The hydrogen atoms in these clusters can be replaced by convenient groups that open the way to a chemical alternative to conventional "organic" or "organometallic" realms. Icosahedral boron cluster derivatives have been reviewed from different perspectives; however, there is a need for a review dedicated to the redox and photophysical characteristics of easily accessible borane and carborane derivatives, which are excellent materials for a wide range of applications. This review deals with the redox properties and photoluminescence behavior of this collection of compounds, as well as their influence on the properties of materials and devices whose working principles are related to electron-transfer or electron-promotion phenomena. We hope that this review will be of great value to boron cluster scientists and researchers working in the photoluminescence and electrochemistry fields who are interested in exploring the possibilities of these unique and promising systems.

355 citations