scispace - formally typeset
Search or ask a question
Author

Carsten Mai

Bio: Carsten Mai is an academic researcher from University of Göttingen. The author has contributed to research in topics: Lignin & Ultimate tensile strength. The author has an hindex of 35, co-authored 177 publications receiving 5511 citations. Previous affiliations of Carsten Mai include Technological Educational Institute of Larissa.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors review the recent progress in using silane coupling agents for NFPCs, summarizes the effective silane structures from the silane family, clarifies the interaction mechanisms between natural fibers and polymer matrices, and presents the effects of silane treatments on the mechanical and outdoor performance of the resulting composites.
Abstract: Natural fiber reinforced polymer composites (NFPCs) provide the customers with more alternatives in the material market due to their unique advantages. Poor fiber–matrix interfacial adhesion may, however, negatively affect the physical and mechanical properties of the resulting composites due to the surface incompatibility between hydrophilic natural fibers and non-polar polymers (thermoplastics and thermosets). A variety of silanes (mostly trialkoxysilanes) have been applied as coupling agents in the NFPCs to promote interfacial adhesion and improve the properties of composites. This paper reviews the recent progress in using silane coupling agents for NFPCs, summarizes the effective silane structures from the silane family, clarifies the interaction mechanisms between natural fibers and polymer matrices, and presents the effects of silane treatments on the mechanical and outdoor performance of the resulting composites.

1,725 citations

Journal ArticleDOI
TL;DR: This is a novel attempt to enzymatically induce grafting of polymeric side chains onto the lignin backbone, and it enables the utilization of lign in as part of new engineering materials.
Abstract: The cell walls of woody plants are compounded materials made by in situ polymerization of a polyphenolic matrix (lignin) into a web of fibers (cellulose), a process that is catalysed by polyphenoloxidases (laccases) or peroxidases. The first attempt to transform the basic strategy of this natural process for use in human craftsmanship was the ancient lacquer method. The sap of the lacquer tree (Rhus verniciflua) contains large amounts of a phenol (urushiol), a polysaccharide and the enzyme laccase. This oil-in-water emulsion solidifies in the presence of oxygen. The Chinese began using this phenomenon for the production of highly creative artwork more than 6,000 years ago. It was the first example of an isolated enzyme being used as a catalyst to create an artificial plastic compound. In order to apply this process to the production of products on an industrial scale, an inexpensive phenol must be used, which is transferred by an enzyme to active radicals that react with different components to form a compounded material. At present, the following approaches have been studied: (1) In situ polymerization of lignin for the production of particle boards. Adhesive cure is based on the oxidative polymerization of lignin using phenoloxidases (laccase) as radical donors. This lignin-based bio-adhesive can be applied under conventional pressing conditions. The resulting particle boards meet German performance standards. By this process, 80% of the petrochemical binders in the wood-composite industry can be replaced by materials from renewable resources. (2) Enzymatic copolymerization of lignin and alkenes. In the presence of organic hydroperoxides, laccase catalyses the reaction between lignin and olefins. Detailed studies on the reaction between lignin and acrylate monomers showed that chemo-enzymatic copolymerization offers the possibility to produce defined lignin-acrylate copolymers. The system allows control of the molecular weights of the products in a way that has not been possible with chemical catalysts. This is a novel attempt to enzymatically induce grafting of polymeric side chains onto the lignin backbone, and it enables the utilization of lignin as part of new engineering materials. (3) Enzymatic activation of the middle-lamella lignin of wood fibers for the production of wood composites. The incubation of wood fibers with a phenol oxidizing enzyme results in oxidative activation of the lignin crust on the fiber surface. When such fibers are pressed together, boards are obtained which meet the German standards for medium-density fiber boards (MDF). The fibers are bound together in a way that comes close to that by which wood fibers are bound together in naturally grown wood. This process will, for the first time, yield wood composites that are produced solely from naturally grown products without any addition of resins.

230 citations

Journal ArticleDOI
TL;DR: In this paper, wood properties such as cell wall bulking, anti-swelling efficiency (ASE), moisture uptake and durability were more significantly improved in samples treated with monomeric silanes than in samples treating with oligomeric compounds.
Abstract: Wood was treated with three different alkoxysilanes which are able to undergo a sol–gel process: tetraethoxysilane (TEOS), methyl triethoxysilane (MTES) and propyl triethoxysilane (PTEO). Two types of treatments were compared: impregnation of fibre saturated wood with monomeric silane solutions, and impregnation with pre-hydrolysed partly oligomeric silanes. Wood properties such as cell wall bulking, anti-swelling efficiency (ASE), moisture uptake and durability were more significantly improved in samples treated with monomeric silanes than in samples treated with oligomeric silanes. SEM-EDX mapping showed that this treatment resulted in a higher degree of silicon incorporation into the cell wall, although the weight percent gain (WPG) was lower compared to the treatment with pre-hydrolysed partly oligomeric silanes. The resistance against soil micro-organisms was enhanced in the initial phase of incubation especially in those samples treated with organo-functional-alkoxysilanes. In miniaturised block tests with the white-rot basidiomycete Trametes versicolor, an improved durability was observed within the test period. During an air conditioning step, a weight loss of the treated samples occurred which was accompanied by a reduction in bulking and ASE. The initial reduction of moisture uptake observed after treatment diminished almost completely. This effect was explained by an ageing of the gels in the wood cell wall which is a consequence of uncompleted hydrolysis and condensation of the silanes during the treatment.

199 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the treatment of wood with various inorganic silicon compounds, such as tetraalkoxysilanes and silicofluorides, and the mode of action of these fluorides is based on their biocidal action.
Abstract: This review describes the treatment of wood with various inorganic silicon compounds. Among these compounds silicofluorides represent one of the long-known classes of wood preservatives based on silicon. Data on an organic fluorosilicon compound (“silafluofen”) are additionally presented. The mode of action of these fluorides is based on their biocidal action. “Water glass”, an alkali silicate, was able to enhance the durability of wood but showed some important drawbacks. Because of its high hygroscopicity and its high pH values, increased moisture absorption and strength loss of wood was frequently observed. Wood treated with tetraalkoxysilanes showed an enhanced dimensional stability, especially when the hydrolysis and the condensation of the silanes was controlled to react within the cell wall. Durability and fire resistance were improved to a certain degree and could be significantly enhanced by addition of boron compounds.

194 citations

Journal ArticleDOI
TL;DR: A wide variety of organo-silicon compounds have been described for application on wood as mentioned in this paper, which vary from an increase in dimensional stability, durability and fire resistance to an enhanced hydrophobation of wood.
Abstract: A wide variety of organo-silicon compounds has been described for application on wood. Some compounds such as organo-functional silanes which are mostly applied in combination with tetraalkoxysilanes (sol-gel process) as well as chlorosilanes and trimethylsilyl derivatives were proposed for a full impregnation treatment of wood. Other systems have been developed for surface treatment of wood such as plasma coating with hexametyldisiloxane and micro-emulsions which mainly contain silane/siloxane mixtures. The effects related to the various treatments vary from an increase in dimensional stability, durability and fire resistance to an enhanced hydrophobation of wood. In the cases of decay and fire resistance a combination of silicon based systems with other chemicals was required to obtain satisfactory results. Due to the excellent water repellent ability and weathering stability of some treatments, application of silicon treated wood under conditions of hazard class III (EN 335 outside above ground exposure) is recommended.

172 citations


Cited by
More filters
Journal ArticleDOI
Abstract: Recently, there has been a rapid growth in research and innovation in the natural fibre composite (NFC) area. Interest is warranted due to the advantages of these materials compared to others, such as synthetic fibre composites, including low environmental impact and low cost and support their potential across a wide range of applications. Much effort has gone into increasing their mechanical performance to extend the capabilities and applications of this group of materials. This review aims to provide an overview of the factors that affect the mechanical performance of NFCs and details achievements made with them.

2,182 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the recent progress in using silane coupling agents for NFPCs, summarizes the effective silane structures from the silane family, clarifies the interaction mechanisms between natural fibers and polymer matrices, and presents the effects of silane treatments on the mechanical and outdoor performance of the resulting composites.
Abstract: Natural fiber reinforced polymer composites (NFPCs) provide the customers with more alternatives in the material market due to their unique advantages. Poor fiber–matrix interfacial adhesion may, however, negatively affect the physical and mechanical properties of the resulting composites due to the surface incompatibility between hydrophilic natural fibers and non-polar polymers (thermoplastics and thermosets). A variety of silanes (mostly trialkoxysilanes) have been applied as coupling agents in the NFPCs to promote interfacial adhesion and improve the properties of composites. This paper reviews the recent progress in using silane coupling agents for NFPCs, summarizes the effective silane structures from the silane family, clarifies the interaction mechanisms between natural fibers and polymer matrices, and presents the effects of silane treatments on the mechanical and outdoor performance of the resulting composites.

1,725 citations

Journal ArticleDOI
TL;DR: This work has focused on more recent reports on the occurrence of laccase and its functions in physiological development and industrial utility and the reports of molecular weights, pH optima, and substrate specificity are extremely diverse.

1,309 citations

Journal ArticleDOI
TL;DR: This review presents in depth discussions of all these classes of Cu enzymes and the correlations within and among these classes, as well as the present understanding of the enzymology, kinetics, geometric structures, electronic structures and the reaction mechanisms these have elucidated.
Abstract: Based on its generally accessible I/II redox couple and bioavailability, copper plays a wide variety of roles in nature that mostly involve electron transfer (ET), O2 binding, activation and reduction, NO2− and N2O reduction and substrate activation. Copper sites that perform ET are the mononuclear blue Cu site that has a highly covalent CuII-S(Cys) bond and the binuclear CuA site that has a Cu2S(Cys)2 core with a Cu-Cu bond that keeps the site delocalized (Cu(1.5)2) in its oxidized state. In contrast to inorganic Cu complexes, these metalloprotein sites transfer electrons rapidly often over long distances, as has been previously reviewed.1–4 Blue Cu and CuA sites will only be considered here in their relation to intramolecular ET in multi-center enzymes. The focus of this review is on the Cu enzymes (Figure 1). Many are involved in O2 activation and reduction, which has mostly been thought to involve at least two electrons to overcome spin forbiddenness and the low potential of the one electron reduction to superoxide (Figure 2).5,6 Since the Cu(III) redox state has not been observed in biology, this requires either more than one Cu center or one copper and an additional redox active organic cofactor. The latter is formed in a biogenesis reaction of a residue (Tyr) that is also Cu catalyzed in the first turnover of the protein. Recently, however, there have been a number of enzymes suggested to utilize one Cu to activate O2 by 1e− reduction to form a Cu(II)-O2•− intermediate (an innersphere redox process) and it is important to understand the active site requirements to drive this reaction. The oxidases that catalyze the 4e−reduction of O2 to H2O are unique in that they effectively perform this reaction in one step indicating that the free energy barrier for the second two-electron reduction of the peroxide product of the first two-electron step is very low. In nature this requires either a trinuclear Cu cluster (in the multicopper oxidases) or a Cu/Tyr/Heme Fe cluster (in the cytochrome oxidases). The former accomplishes this with almost no overpotential maximizing its ability to oxidize substrates and its utility in biofuel cells, while the latter class of enzymes uses the excess energy to pump protons for ATP synthesis. In bacterial denitrification, a mononuclear Cu center catalyzes the 1e- reduction of nitrite to NO while a unique µ4S2−Cu4 cluster catalyzes the reduction of N2O to N2 and H2O, a 2e− process yet requiring 4Cu’s. Finally there are now several classes of enzymes that utilize an oxidized Cu(II) center to activate a covalently bound substrate to react with O2. Figure 1 Copper active sites in biology. Figure 2 Latimer Diagram for Oxygen Reduction at pH = 7.0 Adapted from References 5 and 6. This review presents in depth discussions of all these classes of Cu enzymes and the correlations within and among these classes. For each class we review our present understanding of the enzymology, kinetics, geometric structures, electronic structures and the reaction mechanisms these have elucidated. While the emphasis here is on the enzymology, model studies have significantly contributed to our understanding of O2 activation by a number of Cu enzymes and are included in appropriate subsections of this review. In general we will consider how the covalency of a Cu(II)–substrate bond can activate the substrate for its spin forbidden reaction with O2, how in binuclear Cu enzymes the exchange coupling between Cu’s overcomes the spin forbiddenness of O2 binding and controls electron transfer to O2 to direct catalysis either to perform two e− electrophilic aromatic substitution or 1e− H-atom abstraction, the type of oxygen intermediate that is required for H-atom abstraction from the strong C-H bond of methane (104 kcal/mol) and how the trinuclear Cu cluster and the Cu/Tyr/Heme Fe cluster achieve their very low barriers for the reductive cleavage of the O-O bond. Much of the insight available into these mechanisms in Cu biochemistry has come from the application of a wide range of spectroscopies and the correlation of spectroscopic results to electronic structure calculations. Thus we start with a tutorial on the different spectroscopic methods utilized to study mononuclear and multinuclear Cu enzymes and their correlations to different levels of electronic structure calculations.

1,181 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the applications of laccases within different industrial fields as well as their potential extension to the nanobiotechnology area is presented, where they are also used as cleaning agents for certain water purification systems, as catalysts for the manufacture of anti-cancer drugs and even as ingredients in cosmetics.

1,131 citations