scispace - formally typeset
Search or ask a question
Author

Carsten Rother

Bio: Carsten Rother is an academic researcher from Heidelberg University. The author has contributed to research in topics: Image segmentation & Segmentation. The author has an hindex of 84, co-authored 306 publications receiving 32039 citations. Previous affiliations of Carsten Rother include Microsoft & Royal Institute of Technology.


Papers
More filters
Journal ArticleDOI
01 Aug 2004
TL;DR: A more powerful, iterative version of the optimisation of the graph-cut approach is developed and the power of the iterative algorithm is used to simplify substantially the user interaction needed for a given quality of result.
Abstract: The problem of efficient, interactive foreground/background segmentation in still images is of great practical importance in image editing. Classical image segmentation tools use either texture (colour) information, e.g. Magic Wand, or edge (contrast) information, e.g. Intelligent Scissors. Recently, an approach based on optimization by graph-cut has been developed which successfully combines both types of information. In this paper we extend the graph-cut approach in three respects. First, we have developed a more powerful, iterative version of the optimisation. Secondly, the power of the iterative algorithm is used to simplify substantially the user interaction needed for a given quality of result. Thirdly, a robust algorithm for "border matting" has been developed to estimate simultaneously the alpha-matte around an object boundary and the colours of foreground pixels. We show that for moderately difficult examples the proposed method outperforms competitive tools.

5,670 citations

Book ChapterDOI
07 May 2006
TL;DR: A new approach to learning a discriminative model of object classes, incorporating appearance, shape and context information efficiently, is proposed, which is used for automatic visual recognition and semantic segmentation of photographs.
Abstract: This paper proposes a new approach to learning a discriminative model of object classes, incorporating appearance, shape and context information efficiently. The learned model is used for automatic visual recognition and semantic segmentation of photographs. Our discriminative model exploits novel features, based on textons, which jointly model shape and texture. Unary classification and feature selection is achieved using shared boosting to give an efficient classifier which can be applied to a large number of classes. Accurate image segmentation is achieved by incorporating these classifiers in a conditional random field. Efficient training of the model on very large datasets is achieved by exploiting both random feature selection and piecewise training methods. High classification and segmentation accuracy are demonstrated on three different databases: i) our own 21-object class database of photographs of real objects viewed under general lighting conditions, poses and viewpoints, ii) the 7-class Corel subset and iii) the 7-class Sowerby database used in [1]. The proposed algorithm gives competitive results both for highly textured (e.g. grass, trees), highly structured (e.g. cars, faces, bikes, aeroplanes) and articulated objects (e.g. body, cow).

1,343 citations

Journal ArticleDOI
TL;DR: A new approach for learning a discriminative model of object classes, incorporating texture, layout, and context information efficiently, which gives competitive and visually pleasing results for objects that are highly textured, highly structured, and even articulated.
Abstract: This paper details a new approach for learning a discriminative model of object classes, incorporating texture, layout, and context information efficiently The learned model is used for automatic visual understanding and semantic segmentation of photographs Our discriminative model exploits texture-layout filters, novel features based on textons, which jointly model patterns of texture and their spatial layout Unary classification and feature selection is achieved using shared boosting to give an efficient classifier which can be applied to a large number of classes Accurate image segmentation is achieved by incorporating the unary classifier in a conditional random field, which (i) captures the spatial interactions between class labels of neighboring pixels, and (ii) improves the segmentation of specific object instances Efficient training of the model on large datasets is achieved by exploiting both random feature selection and piecewise training methods High classification and segmentation accuracy is demonstrated on four varied databases: (i) the MSRC 21-class database containing photographs of real objects viewed under general lighting conditions, poses and viewpoints, (ii) the 7-class Corel subset and (iii) the 7-class Sowerby database used in He et al (Proceeding of IEEE Conference on Computer Vision and Pattern Recognition, vol 2, pp 695---702, June 2004), and (iv) a set of video sequences of television shows The proposed algorithm gives competitive and visually pleasing results for objects that are highly textured (grass, trees, etc), highly structured (cars, faces, bicycles, airplanes, etc), and even articulated (body, cow, etc)

1,193 citations

Journal ArticleDOI
TL;DR: A set of energy minimization benchmarks are described and used to compare the solution quality and runtime of several common energy minimizations algorithms and a general-purpose software interface is provided that allows vision researchers to easily switch between optimization methods.
Abstract: Among the most exciting advances in early vision has been the development of efficient energy minimization algorithms for pixel-labeling tasks such as depth or texture computation. It has been known for decades that such problems can be elegantly expressed as Markov random fields, yet the resulting energy minimization problems have been widely viewed as intractable. Algorithms such as graph cuts and loopy belief propagation (LBP) have proven to be very powerful: For example, such methods form the basis for almost all the top-performing stereo methods. However, the trade-offs among different energy minimization algorithms are still not well understood. In this paper, we describe a set of energy minimization benchmarks and use them to compare the solution quality and runtime of several common energy minimization algorithms. We investigate three promising methods-graph cuts, LBP, and tree-reweighted message passing-in addition to the well-known older iterated conditional mode (ICM) algorithm. Our benchmark problems are drawn from published energy functions used for stereo, image stitching, interactive segmentation, and denoising. We also provide a general-purpose software interface that allows vision researchers to easily switch between optimization methods. The benchmarks, code, images, and results are available at http://vision.middlebury.edu/MRF/.

1,065 citations

Proceedings ArticleDOI
01 Jun 2019
TL;DR: A novel panoptic quality (PQ) metric is proposed that captures performance for all classes (stuff and things) in an interpretable and unified manner and is performed a rigorous study of both human and machine performance for PS on three existing datasets, revealing interesting insights about the task.
Abstract: We propose and study a task we name panoptic segmentation (PS). Panoptic segmentation unifies the typically distinct tasks of semantic segmentation (assign a class label to each pixel) and instance segmentation (detect and segment each object instance). The proposed task requires generating a coherent scene segmentation that is rich and complete, an important step toward real-world vision systems. While early work in computer vision addressed related image/scene parsing tasks, these are not currently popular, possibly due to lack of appropriate metrics or associated recognition challenges. To address this, we propose a novel panoptic quality (PQ) metric that captures performance for all classes (stuff and things) in an interpretable and unified manner. Using the proposed metric, we perform a rigorous study of both human and machine performance for PS on three existing datasets, revealing interesting insights about the task. The aim of our work is to revive the interest of the community in a more unified view of image segmentation. For more analysis and up-to-date results, please check the arXiv version of the paper: {\small\url{https://arxiv.org/abs/1801.00868}}.

980 citations


Cited by
More filters
Proceedings ArticleDOI
Jia Deng1, Wei Dong1, Richard Socher1, Li-Jia Li1, Kai Li1, Li Fei-Fei1 
20 Jun 2009
TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Abstract: The explosion of image data on the Internet has the potential to foster more sophisticated and robust models and algorithms to index, retrieve, organize and interact with images and multimedia data. But exactly how such data can be harnessed and organized remains a critical problem. We introduce here a new database called “ImageNet”, a large-scale ontology of images built upon the backbone of the WordNet structure. ImageNet aims to populate the majority of the 80,000 synsets of WordNet with an average of 500-1000 clean and full resolution images. This will result in tens of millions of annotated images organized by the semantic hierarchy of WordNet. This paper offers a detailed analysis of ImageNet in its current state: 12 subtrees with 5247 synsets and 3.2 million images in total. We show that ImageNet is much larger in scale and diversity and much more accurate than the current image datasets. Constructing such a large-scale database is a challenging task. We describe the data collection scheme with Amazon Mechanical Turk. Lastly, we illustrate the usefulness of ImageNet through three simple applications in object recognition, image classification and automatic object clustering. We hope that the scale, accuracy, diversity and hierarchical structure of ImageNet can offer unparalleled opportunities to researchers in the computer vision community and beyond.

49,639 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Book ChapterDOI
06 Sep 2014
TL;DR: A new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding by gathering images of complex everyday scenes containing common objects in their natural context.
Abstract: We present a new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding. This is achieved by gathering images of complex everyday scenes containing common objects in their natural context. Objects are labeled using per-instance segmentations to aid in precise object localization. Our dataset contains photos of 91 objects types that would be easily recognizable by a 4 year old. With a total of 2.5 million labeled instances in 328k images, the creation of our dataset drew upon extensive crowd worker involvement via novel user interfaces for category detection, instance spotting and instance segmentation. We present a detailed statistical analysis of the dataset in comparison to PASCAL, ImageNet, and SUN. Finally, we provide baseline performance analysis for bounding box and segmentation detection results using a Deformable Parts Model.

30,462 citations

Journal ArticleDOI
TL;DR: The state-of-the-art in evaluated methods for both classification and detection are reviewed, whether the methods are statistically different, what they are learning from the images, and what the methods find easy or confuse.
Abstract: The Pascal Visual Object Classes (VOC) challenge is a benchmark in visual object category recognition and detection, providing the vision and machine learning communities with a standard dataset of images and annotation, and standard evaluation procedures. Organised annually from 2005 to present, the challenge and its associated dataset has become accepted as the benchmark for object detection. This paper describes the dataset and evaluation procedure. We review the state-of-the-art in evaluated methods for both classification and detection, analyse whether the methods are statistically different, what they are learning from the images (e.g. the object or its context), and what the methods find easy or confuse. The paper concludes with lessons learnt in the three year history of the challenge, and proposes directions for future improvement and extension.

15,935 citations

Proceedings ArticleDOI
20 Mar 2017
TL;DR: This work presents a conceptually simple, flexible, and general framework for object instance segmentation, which extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition.
Abstract: We present a conceptually simple, flexible, and general framework for object instance segmentation. Our approach efficiently detects objects in an image while simultaneously generating a high-quality segmentation mask for each instance. The method, called Mask R-CNN, extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition. Mask R-CNN is simple to train and adds only a small overhead to Faster R-CNN, running at 5 fps. Moreover, Mask R-CNN is easy to generalize to other tasks, e.g., allowing us to estimate human poses in the same framework. We show top results in all three tracks of the COCO suite of challenges, including instance segmentation, bounding-box object detection, and person keypoint detection. Without tricks, Mask R-CNN outperforms all existing, single-model entries on every task, including the COCO 2016 challenge winners. We hope our simple and effective approach will serve as a solid baseline and help ease future research in instance-level recognition. Code will be made available.

14,299 citations