scispace - formally typeset
Search or ask a question
Author

Carsten Thies

Bio: Carsten Thies is an academic researcher from University of Göttingen. The author has contributed to research in topics: Species richness & Biodiversity. The author has an hindex of 39, co-authored 62 publications receiving 13760 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the negative and positive effects of agricultural land use for the conservation of biodiversity, and its relation to ecosystem services, need a landscape perspective, which is difficult to be found in the literature.
Abstract: Understanding the negative and positive effects of agricultural land use for the conservation of biodiversity, and its relation to ecosystem services, needs a landscape perspective. Agriculture can contribute to the conservation of high-diversity systems, which may provide important ecosystem services such as pollination and biological control via complementarity and sampling effects. Land-use management is often focused on few species and local processes, but in dynamic, agricultural landscapes, only a diversity of insurance species may guarantee resilience (the capacity to reorganize after disturbance). Interacting species experience their surrounding landscape at different spatial scales, which influences trophic interactions. Structurally complex landscapes enhance local diversity in agroecosystems, which may compensate for local high-intensity management. Organisms with high-dispersal abilities appear to drive these biodiversity patterns and ecosystem services, because of their recolonization ability and larger resources experienced. Agri-environment schemes (incentives for farmers to benefit the environment) need to broaden their perspective and to take the different responses to schemes in simple (high impact) and complex (low impact) agricultural landscapes into account. In simple landscapes, local allocation of habitat is more important than in complex landscapes, which are in total at risk. However, little knowledge of the relative importance of local and landscape management for biodiversity and its relation to ecosystem services make reliable recommendations difficult.

3,460 citations

Journal ArticleDOI
TL;DR: This review uses knowledge gained from human‐modified landscapes to suggest eight hypotheses, which it hopes will encourage more systematic research on the role of landscape composition and configuration in determining the structure of ecological communities, ecosystem functioning and services.
Abstract: Understanding how landscape characteristics affect biodiversity patterns and ecological processes at local and landscape scales is critical for mitigating effects of global environmental change. In this review, we use knowledge gained from human-modified landscapes to suggest eight hypotheses, which we hope will encourage more systematic research on

1,513 citations

Journal ArticleDOI
01 May 2002-Ecology
TL;DR: It is concluded that local landscape destruction affects solitary wild bees more than social bees, possibly changing mutualistic plant-pollinator and competitive wild bees- honey bees interactions and that only analyses of multiple spatial scales may detect the importance of the landscape context for local pollinator communities.
Abstract: Most ecological processes and interactions depend on scales much larger than a single habitat, and therefore it is important to link spatial patterns and ecological processes at a landscape scale. Here, we analyzed the effects of landscape context on the distribution of bees (Hymenoptera: Apoidea) at multiple spatial scales with respect to the following hypotheses: (1) Local abundance and diversity of bees increase with increasing proportion of the surrounding seminatural habitats. (2) Solitary wild bees, bumble bees, and honey bees respond to landscape context at different spatial scales. We selected 15 landscape sectors and determined the percentage of seminatural habitats and the diversity of habitat types at eight spatial scales (radius 250-3000 m) by field inspections and analyses of vegetation maps using two Geographic Information Systems. The percentage of semi- natural habitats varied between 1.4% and 28%. In the center of each landscape sector a patch of potted flowering plants (four perennial and two annual species) was placed in the same habitat type, a grassy field margin adjacent to cereal fields. In all, 865 wild bee individuals and 467 honey bees were observed and an additional 475 individuals were caught for species identification. Species richness and abundance of solitary wild bees showed a close positive correlation with the percentage of seminatural habitats at small scales up to 750 m, whereas bumble bees and honey bees did not respond to landscape context at these scales. In contrast, honey bees were correlated with landscape context at large scales. The densities of flower-visiting honey bees even increased with decreasing proportion of seminatural habitats at a radius of 3000 m. We are not aware of any empirical studies showing contrasting foraging patterns related to landscape context at different spatial scales. We conclude (1) that local landscape destruction affects solitary wild bees more than social bees, possibly changing mutualistic plant-pollinator and competitive wild bees- honey bees interactions and (2) that only analyses of multiple spatial scales may detect the importance of the landscape context for local pollinator communities.

1,170 citations

Journal ArticleDOI
06 Aug 1999-Science
TL;DR: The presence of old field margin strips along rape fields was associated with increased mortality of pollen beetles resulting from parasitism and adjacent, large, old fallow habitatsHad an even greater effect in structurally complex landscapes, parasitism was higher and crop damage was lower than in simple landscapes with a high percentage of agricultural use.
Abstract: Biological pest control has primarily relied on local improvements in populations of natural enemies, but landscape structure may also be important. This is shown here with experiments at different spatial scales using the rape pollen beetle (Meligethes aeneus), an important pest on oilseed rape (Brassica napus). The presence of old field margin strips along rape fields was associated with increased mortality of pollen beetles resulting from parasitism and adjacent, large, old fallow habitats had an even greater effect. In structurally complex landscapes, parasitism was higher and crop damage was lower than in simple landscapes with a high percentage of agricultural use.

784 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
TL;DR: In this article, the authors suggest that the term "fragmentation" should be reserved for the breaking apart of habitat, independent of habitat loss, and that fragmentation per se has much weaker effects on biodiversity that are at least as likely to be positive as negative.
Abstract: ■ Abstract The literature on effects of habitat fragmentation on biodiversity is huge. It is also very diverse, with different authors measuring fragmentation in different ways and, as a consequence, drawing different conclusions regarding both the magnitude and direction of its effects. Habitat fragmentation is usually defined as a landscape-scale process involving both habitat loss and the breaking apart of habitat. Results of empirical studies of habitat fragmentation are often difficult to interpret because (a) many researchers measure fragmentation at the patch scale, not the landscape scale and (b) most researchers measure fragmentation in ways that do not distinguish between habitat loss and habitat fragmentation per se, i.e., the breaking apart of habitat after controlling for habitat loss. Empirical studies to date suggest that habitat loss has large, consistently negative effects on biodiversity. Habitat fragmentation per se has much weaker effects on biodiversity that are at least as likely to be positive as negative. Therefore, to correctly interpret the influence of habitat fragmentation on biodiversity, the effects of these two components of fragmentation must be measured independently. More studies of the independent effects of habitat loss and fragmentation per se are needed to determine the factors that lead to positive versus negative effects of fragmentation per se. I suggest that the term “fragmentation” should be reserved for the breaking apart of habitat, independent of habitat loss.

6,341 citations

01 Jan 1980
TL;DR: In this article, the influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition and found that the variability of the relationship between the δ^(15)N values of animals and their diets is greater for different individuals raised on the same diet than for the same species raised on different diets.
Abstract: The influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition. The isotopic composition of the nitrogen in an animal reflects the nitrogen isotopic composition of its diet. The δ^(15)N values of the whole bodies of animals are usually more positive than those of their diets. Different individuals of a species raised on the same diet can have significantly different δ^(15)N values. The variability of the relationship between the δ^(15)N values of animals and their diets is greater for different species raised on the same diet than for the same species raised on different diets. Different tissues of mice are also enriched in ^(15)N relative to the diet, with the difference between the δ^(15)N values of a tissue and the diet depending on both the kind of tissue and the diet involved. The δ^(15)N values of collagen and chitin, biochemical components that are often preserved in fossil animal remains, are also related to the δ^(15)N value of the diet. The dependence of the δ^(15)N values of whole animals and their tissues and biochemical components on the δ^(15)N value of diet indicates that the isotopic composition of animal nitrogen can be used to obtain information about an animal's diet if its potential food sources had different δ^(15)N values. The nitrogen isotopic method of dietary analysis probably can be used to estimate the relative use of legumes vs non-legumes or of aquatic vs terrestrial organisms as food sources for extant and fossil animals. However, the method probably will not be applicable in those modern ecosystems in which the use of chemical fertilizers has influenced the distribution of nitrogen isotopes in food sources. The isotopic method of dietary analysis was used to reconstruct changes in the diet of the human population that occupied the Tehuacan Valley of Mexico over a 7000 yr span. Variations in the δ^(15)C and δ^(15)N values of bone collagen suggest that C_4 and/or CAM plants (presumably mostly corn) and legumes (presumably mostly beans) were introduced into the diet much earlier than suggested by conventional archaeological analysis.

5,548 citations

Journal ArticleDOI
TL;DR: It is found that fruit, vegetable or seed production from 87 of the leading global food crops is dependent upon animal pollination, while 28 crops do not rely upon animalPollination, however, global production volumes give a contrasting perspective.
Abstract: The extent of our reliance on animal pollination for world crop production for human food has not previously been evaluated and the previous estimates for countries or continents have seldom used primary data. In this review, we expand the previous estimates using novel primary data from 200 countries and found that fruit, vegetable or seed production from 87 of the leading global food crops is dependent upon animal pollination, while 28 crops do not rely upon animal pollination. However, global production volumes give a contrasting perspective, since 60% of global production comes from crops that do not depend on animal pollination, 35% from crops that depend on pollinators, and 5% are unevaluated. Using all crops traded on the world market and setting aside crops that are solely passively self-pollinated, wind-pollinated or parthenocarpic, we then evaluated the level of dependence on animal-mediated pollination for crops that are directly consumed by humans. We found that pollinators are essential for 13 crops, production is highly pollinator dependent for 30, moderately for 27, slightly for 21, unimportant for 7, and is of unknown significance for the remaining 9. We further evaluated whether local and landscape-wide management for natural pollination services could help to sustain crop diversity and production. Case studies for nine crops on four continents revealed that agricultural intensification jeopardizes wild bee communities and their stabilizing effect on pollination services at the landscape scale.

4,830 citations

Journal ArticleDOI
TL;DR: Food in the Anthropocene : the EAT-Lancet Commission on healthy diets from sustainable food systems focuses on meat, fish, vegetables and fruit as sources of protein.

4,710 citations