scispace - formally typeset
Search or ask a question
Author

Catalina Leoveanu

Bio: Catalina Leoveanu is an academic researcher from University of Toronto. The author has contributed to research in topics: Germination & Endosperm. The author has an hindex of 1, co-authored 1 publications receiving 126 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The role of the endosperm during seed germination has been investigated in this article. But, it is not known whether the embryo secretes signals to the endo-sperm to induce the degradation of the seed reserve and to promote endo weakening during germination.
Abstract: In angiosperms, a double fertilization event initiates the development of two distinct structures, the embryo and endosperm. The endosperm plays an important role in supporting embryonic growth by supplying nutrients, protecting the embryo and controlling embryo growth by acting as a mechanical barrier during seed development and germination. Its structure and function in the mature dry seed is divergent and specialized among different plant species. A subset of endospermic tissues are composed of living cells even after seed maturation, and play an active role in the regulation of seed germination. Transcriptome analysis has provided new insights into the regulatory functions of the endosperm during seed germination. It is well known that the embryo secretes signals to the endosperm to induce the degradation of the seed reserve and to promote endosperm weakening during germination. Recent advances in seed biology have shown that the endosperm is capable of sensing environmental signals, and can produce and secrete signals to regulate the growth of the embryo. Thus, germination is a systemic response that involves bidirectional interactions between the embryo and endosperm.

167 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review summarizes the current state of the understanding of the effects of heavy metal stress on seed germination and seedling development and highlights informational gaps and areas for future research.
Abstract: Heavy metal contamination in soils can influence plants and animals, often leading to toxicosis. Heavy metals can impact various biochemical processes in plants, including enzyme and antioxidant production, protein mobilization and photosynthesis. Hydrolyzing enzymes play a major role in seed germination. Enzymes such as acid phosphatases, proteases and α-amylases are known to facilitate both seed germination and seedling growth via mobilizing nutrients in the endosperm. In the presence of heavy metals, starch is immobilized and nutrient sources become limited. Moreover, a reduction in proteolytic enzyme activity and an increase in protein and amino acid content can be observed under heavy metal stress. Proline, is an amino acid which is essential for cellular metabolism. Numerous studies have shown an increase in proline content under oxidative stress in higher plants. Furthermore, heat shock protein production has also been observed under heavy metal stress. The chloroplast small heat shock proteins (Hsp) reduce photosynthesis damage, rather than repair or help to recover from heavy metal-induced damage. Heavy metals are destructive substances for photosynthesis. They are involved in destabilizing enzymes, oxidizing photosystem II (PS II) and disrupting the electron transport chain and mineral metabolism. Although the physiological effects of Cd have been investigated thoroughly, other metals such as As, Cr, Hg, Cu and Pb have received relatively little attention. Among agricultural plants, rice has been studied extensively; additional studies are needed to characterize toxicities of different heavy metals on other crops. This review summarizes the current state of our understanding of the effects of heavy metal stress on seed germination and seedling development and highlights informational gaps and areas for future research.

147 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the reduction in puncture force of a seed's micropylar endosperm is environmentally and hormonally regulated and involves tissue-specific expression of cell wall remodelling proteins such as expansins, diverse hydrolases, and the production of directly acting apoplastic reactive oxygen.
Abstract: From a biomechanical perspective, the completion of seed (and fruit) germination depends on the balance of two opposing forces: the growth potential of the embryonic axis (radicle-hypocotyl growth zone) and the restraint of the seed-covering layers (endosperm, testa, and pericarp). The diverse seed tissues are composite materials which differ in their dynamic properties based on their distinct cell wall composition and water uptake capacities. The biomechanics of embryo cell growth during seed germination depend on irreversible cell wall loosening followed by water uptake due to the decreasing turgor, and this leads to embryo elongation and eventually radicle emergence. Endosperm weakening as a prerequisite for radicle emergence is a widespread phenomenon among angiosperms. Research into the biochemistry and biomechanics of endosperm weakening has demonstrated that the reduction in puncture force of a seed's micropylar endosperm is environmentally and hormonally regulated and involves tissue-specific expression of cell wall remodelling proteins such as expansins, diverse hydrolases, and the production of directly acting apoplastic reactive oxygen. The endosperm-weakening biomechanics and its underlying cell wall biochemistry differ between the micropylar (ME) and chalazal (CE) endosperm domains. In the ME, they involve cell wall loosening, cell separation, and programmed cell death to provide decreased and localized ME tissue resistance, autolysis, and finally the formation of an ME hole required for radicle emergence. Future work will further unravel the molecular mechanisms, environmental regulation, and evolution of the diverse biomechanical cell wall changes underpinning the control of germination by endosperm weakening.

134 citations

Journal Article
TL;DR: In this paper, the authors compared mutants affected in testa pigmentation and/or structure for dormancy, germination, and storability in the model plant Arabidopsis, and found that structural and pigmentation mutants deteriorated faster than the wild types during natural aging at room temperature, with structural mutants being the most strongly affected.
Abstract: The testa of higher plant seeds protects the embryo against adverse environmental conditions. Its role is assumed mainly by controlling germination through dormancy imposition and by limiting the detrimental activity of physical and biological agents during seed storage. To analyze the function of the testa in the model plant Arabidopsis, we compared mutants affected in testa pigmentation and/or structure for dormancy, germination, and storability. The seeds of most mutants exhibited reduced dormancy. Moreover, unlike wild-type testas, mutant testas were permeable to tetrazolium salts. These altered dormancy and tetrazolium uptake properties were related to defects in the pigmentation of the endothelium and its neighboring crushed parenchymatic layers, as determined by vanillin staining and microscopic observations. Structural aberrations such as missing layers or a modified epidermal layer in specific mutants also affected dormancy levels and permeability to tetrazolium. Both structural and pigmentation mutants deteriorated faster than the wild types during natural aging at room temperature, with structural mutants being the most strongly affected.

100 citations

Journal ArticleDOI
TL;DR: Current knowledge on the role of the hormone auxin for the initial development of the three seed structures and as a trigger of fertilization-independent seed development are reviewed.
Abstract: The evolution of seeds defines a remarkable landmark in the history of land plants. A developing seed contains three genetically distinct structures: the embryo, the nourishing tissue, and the seed coat. While fertilization is necessary to initiate seed development in most plant species, apomicts have evolved mechanisms allowing seed formation independently of fertilization. Despite their socio-economical relevance, the molecular mechanisms driving seed development have only recently begun to be understood. Here we review the current knowledge on the role of the hormone auxin for the initial development of the three seed structures and as a trigger of fertilization-independent seed development.

98 citations

Journal ArticleDOI
TL;DR: In mature seeds a thick cuticular film is identified covering the entire outer surface of the endosperm, which is defective in cutin-deficient bodyguard1 seeds, which correlates with alterations in endospermic permeability.
Abstract: Cuticular layers and seeds are prominent plant adaptations to terrestrial life that appeared early and late during plant evolution, respectively. The cuticle is a waterproof film covering plant aerial organs preventing excessive water loss and protecting against biotic and abiotic stresses. Cutin, consisting of crosslinked fatty acid monomers, is the most abundant and studied cuticular component. Seeds are dry, metabolically inert structures promoting plant dispersal by keeping the plant embryo in an arrested protected state. In Arabidopsis thaliana seeds, the embryo is surrounded by a single cell endosperm layer itself surrounded by a seed coat layer, the testa. Whole genome analyses lead us to identify cutin biosynthesis genes as regulatory targets of the phytohormones gibberellins (GA) and abscisic acid (ABA) signaling pathways that control seed germination. Cutin-containing layers are present in seed coats of numerous species, including Arabidopsis, where they regulate permeability to outer compounds. However, the role of cutin in mature seed physiology and germination remains poorly understood. Here we identify in mature seeds a thick cuticular film covering the entire outer surface of the endosperm. This seed cuticle is defective in cutin-deficient bodyguard1 seeds, which is associated with alterations in endospermic permeability. Furthermore, mutants affected in cutin biosynthesis display low seed dormancy and viability levels, which correlates with higher levels of seed lipid oxidative stress. Upon seed imbibition cutin biosynthesis genes are essential to prevent endosperm cellular expansion and testa rupture in response to low GA synthesis. Taken together, our findings suggest that in the course of land plant evolution cuticular structures were co-opted to achieve key physiological seed properties.

93 citations