scispace - formally typeset
Search or ask a question
Author

Catarina Aboim

Bio: Catarina Aboim is an academic researcher from University of Lisbon. The author has contributed to research in topics: Klebsiella pneumoniae & Drug resistance. The author has an hindex of 5, co-authored 5 publications receiving 130 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The temporal increase in antimicrobial resistance and in MDR bacteria causing UTI in dogs and cats creates important therapeutic limitations in veterinary medicine and raises public health concerns since companion animals with UTI may contribute to the spread of such bacteria.
Abstract: Objectives To evaluate temporal trends in antimicrobial resistance, over 16 years, in bacteria isolated from dogs and cats with urinary tract infection (UTI) and the clonal lineages of bacteria harbouring critical antimicrobial resistance mechanisms. Methods Antimicrobial susceptibility testing was conducted for 948 bacteria isolated from dogs and cats with UTI (1999-2014). Resistance mechanisms were detected by PCR, namely ESBL/AmpC in third-generation cephalosporin (3GC)-resistant Escherichia coli and Proteus mirabilis, mecA in methicillin-resistant staphylococci, and aac(6')-Ieaph(2″)-Ia and aph(2″)-1d in high-level gentamicin-resistant (HLGR) enterococci. Resistant bacteria were typed by MLST, and temporal trends in E. coli and Enterobacteriaceae antimicrobial resistance were determined by logistic regression. Results Enterobacteriaceae had a significant temporal increase in resistance to amoxicillin/clavulanate, 3GCs, trimethoprim/sulfamethoxazole, fluoroquinolones, gentamicin and tetracycline (P < 0.001). An increase in MDR was also detected (P < 0.0001). 3GC resistance was mainly caused by the presence of blaCTX-M-15 and blaCMY-2 in E. coli and the presence of blaCMY-2 in P. mirabilis. Two major 3GC-resistant E. coli clonal lineages were detected: O25b:H4-B2-ST131 and ST648. The mecA gene was detected in 9.2% (n = 11/119) of Staphylococcus spp., including MRSA clonal complex (CC) 5 (n = 2) and methicillin-resistant Staphylococcus epidermidis CC5 (n = 4). A temporal increase in MDR methicillin-resistant Staphylococcus pseudintermedius was detected (P = 0.0069). Some ampicillin-resistant and/or HLGR Enterococcus spp. were found to belong to hospital-adapted CCs, namely Enterococcus faecalis ST6-CC6 (n = 1) and Enterococcus faecium CC17 (n = 8). Conclusions The temporal increase in antimicrobial resistance and in MDR bacteria causing UTI in dogs and cats creates important therapeutic limitations in veterinary medicine. Furthermore, the detection of MDR high-risk clonal lineages raises public health concerns since companion animals with UTI may contribute to the spread of such bacteria.

90 citations

Journal ArticleDOI
TL;DR: The population structure, antimicrobial resistance and virulence genes of Klebsiella spp.
Abstract: Objectives To characterize the population structure, antimicrobial resistance and virulence genes of Klebsiella spp. isolated from dogs, cats and humans with urinary tract infections (UTIs). Methods Klebsiella spp. from companion animals (n = 27) and humans (n = 77) with UTI were tested by the disc diffusion method against 29 antimicrobials. Resistant/intermediate isolates were tested by PCR for 16 resistance genes. Seven virulence genes were screened for by PCR. All Klebsiella pneumoniae from companion animals and third-generation cephalosporin (3GC)-resistant isolates from humans were typed by MLST. All Klebsiella spp. were compared after PFGE XbaI macro-restriction using Dice/UPGMA with 1.5% tolerance. Results bla CTX-M-15 was detected in >80% of 3GC-resistant strains. K. pneumoniae high-risk clonal lineage ST15 predominated in companion animal isolates (60%, n = 15/25). Most companion animal ST15 K. pneumoniae belonged to two PFGE clusters (C4, C5) that also included human strains. Companion animal and human ST15-CTX-M-15 K. pneumoniae shared a fimH-1/mrkD/entB/ycfM/kfu virulence profile, with a few (n = 4) also harbouring the yersiniabactin siderophore-encoding genes. The hospital-adapted ST11 K. pneumoniae clonal lineage was detected in a cat (n = 1) and a human (n = 1); both were MDR, had 81.1% Dice/UPGMA similarity and shared several virulence and resistance genes. Two 3GC-resistant ST348 strains with 86.7% Dice/UPGMA similarity were isolated from a cat and a human. Conclusions Companion animals with UTI become infected with high-risk K. pneumoniae clonal lineages harbouring resistance and virulence genes similar to those detected in strains from humans. The ST15-CTX-M-15 K. pneumoniae clonal lineage was disseminated in companion animals with UTI. Caution must be applied by companion animal caretakers to avoid the spread of K. pneumoniae high-risk clonal lineages.

62 citations

Journal ArticleDOI
TL;DR: The results highlight the potential role of dogs as a reservoir of K. pneumoniae to humans and vice versa and to the best knowledge, this is the first report of healthy humans and dogs sharing K. influenza pneumoniae strains that were undistinguishable by PFGE/MLST.
Abstract: This study aimed to characterize the fecal colonization and sharing of Klebsiella pneumoniae strains between companion animals and humans living in close contact. Fecal samples were collected from 50 healthy participants (24 humans, 18 dogs, and 8 cats) belonging to 18 households. Samples were plated onto MacConkey agar (MCK) plates with and without cefotaxime or meropenem supplementation. Up to five K. pneumoniae colonies per participant were compared by pulsed-field gel electrophoresis (PFGE) after XbaI restriction. K. pneumoniae strains with unique pulse types from each participant were characterized for antimicrobial susceptibility, virulence genes, and multilocus sequence type (MLST). Fecal K. pneumoniae pulse types were compared to those of clinical K. pneumoniae strains from animal and human patients with urinary tract infections (n = 104). K. pneumoniae colonization was detected in nonsupplemented MCK in around 38% of dogs (n = 7) and humans (n = 9). K. pneumoniae strains isolated from dogs belonged to sequence type 17 (ST17), ST188, ST252, ST281, ST423, ST1093, ST1241, ST3398, and ST3399. None of the K. pneumoniae strains were multidrug resistant or hypervirulent. Two households included multiple colonized participants. Notably, two colonized dogs within household 15 (H15) shared a strain each (ST252 and ST1241) with one coliving human. One dog from H16 shared one PFGE-undistinguishable K. pneumoniae ST17 strain with two humans from different households; however, the antimicrobial susceptibility phenotypes of these three strains differed. Two main virulence genotypes were detected, namely fimH-1 mrkD ycfM entB kfu and fimH-1 mrkD ycfM entB kpn. These results highlight the potential role of dogs as a reservoir of K. pneumoniae to humans and vice versa. Furthermore, to our best knowledge, this is the first report of healthy humans and dogs sharing K. pneumoniae strains that were undistinguishable by PFGE/MLST.

50 citations

Journal ArticleDOI
TL;DR: The results underline the potential role of companion animals as reservoirs and in the dissemination of uropathogenic P. mirabilis to humans and vice versa and the high number of clusters containing companion animals and human strains points to the zoonotic nature of P.mirabilis.

15 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The acquisition of antimicrobial resistance genes by ESKAPE pathogens has reduced the treatment options for serious infections, increased the burden of disease, and increased death rates due to treatment failure and requires a coordinated global response for antim antibiotic resistance surveillance.
Abstract: Antimicrobial-resistant ESKAPE ( Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens represent a global threat to human health. The acquisition of antimicrobial resistance genes by ESKAPE pathogens has reduced the treatment options for serious infections, increased the burden of disease, and increased death rates due to treatment failure and requires a coordinated global response for antimicrobial resistance surveillance. This looming health threat has restimulated interest in the development of new antimicrobial therapies, has demanded the need for better patient care, and has facilitated heightened governance over stewardship practices.

674 citations

Journal ArticleDOI
TL;DR: How genomics approaches have advanced the understanding of K. pneumoniae taxonomy, ecology and evolution as well as the diversity and distribution of clinically relevant determinants of pathogenicity and antimicrobial resistance is discussed.
Abstract: Klebsiella pneumoniae is a common cause of antimicrobial-resistant opportunistic infections in hospitalized patients. The species is naturally resistant to penicillins, and members of the population often carry acquired resistance to multiple antimicrobials. However, knowledge of K. pneumoniae ecology, population structure or pathogenicity is relatively limited. Over the past decade, K. pneumoniae has emerged as a major clinical and public health threat owing to increasing prevalence of healthcare-associated infections caused by multidrug-resistant strains producing extended-spectrum β-lactamases and/or carbapenemases. A parallel phenomenon of severe community-acquired infections caused by 'hypervirulent' K. pneumoniae has also emerged, associated with strains expressing acquired virulence factors. These distinct clinical concerns have stimulated renewed interest in K. pneumoniae research and particularly the application of genomics. In this Review, we discuss how genomics approaches have advanced our understanding of K. pneumoniae taxonomy, ecology and evolution as well as the diversity and distribution of clinically relevant determinants of pathogenicity and antimicrobial resistance. A deeper understanding of K. pneumoniae population structure and diversity will be important for the proper design and interpretation of experimental studies, for interpreting clinical and public health surveillance data and for the design and implementation of novel control strategies against this important pathogen.

399 citations

Journal ArticleDOI
TL;DR: Of note, coselection and persistence of resistances to critically important antimicrobial agents in human medicine also occurs through the massive use of antimicrobialagents in veterinary medicine, such as tetracyclines or sulfonamides, as long as all those determinants are located on the same genetic elements.
Abstract: Multidrug resistance in Escherichia coli has become a worrying issue that is increasingly observed in human but also in veterinary medicine worldwide. E. coli is intrinsically susceptible to almost all clinically relevant antimicrobial agents, but this bacterial species has a great capacity to accumulate resistance genes, mostly through horizontal gene transfer. The most problematic mechanisms in E. coli correspond to the acquisition of genes coding for extended-spectrum β-lactamases (conferring resistance to broad-spectrum cephalosporins), carbapenemases (conferring resistance to carbapenems), 16S rRNA methylases (conferring pan-resistance to aminoglycosides), plasmid-mediated quinolone resistance (PMQR) genes (conferring resistance to [fluoro]quinolones), and mcr genes (conferring resistance to polymyxins). Although the spread of carbapenemase genes has been mainly recognized in the human sector but poorly recognized in animals, colistin resistance in E. coli seems rather to be related to the use of colistin in veterinary medicine on a global scale. For the other resistance traits, their cross-transfer between the human and animal sectors still remains controversial even though genomic investigations indicate that extended-spectrum β-lactamase producers encountered in animals are distinct from those affecting humans. In addition, E. coli of animal origin often also show resistances to other-mostly older-antimicrobial agents, including tetracyclines, phenicols, sulfonamides, trimethoprim, and fosfomycin. Plasmids, especially multiresistance plasmids, but also other mobile genetic elements, such as transposons and gene cassettes in class 1 and class 2 integrons, seem to play a major role in the dissemination of resistance genes. Of note, coselection and persistence of resistances to critically important antimicrobial agents in human medicine also occurs through the massive use of antimicrobial agents in veterinary medicine, such as tetracyclines or sulfonamides, as long as all those determinants are located on the same genetic elements.

362 citations

Journal ArticleDOI
TL;DR: The diversity of enterococcal species and their distribution in the intestinal tract of animals and the epidemiology of multidrug-resistant enterococci of animal origin are analyzed, with special attention given to beta-lactams, glycopeptides, and linezolid.
Abstract: Enterococci are natural inhabitants of the intestinal tract in humans and many animals, including food-producing and companion animals They can easily contaminate the food and the environment, entering the food chain Moreover, Enterococcus is an important opportunistic pathogen, especially the species E faecalis and E faecium, causing a wide variety of infections This microorganism not only contains intrinsic resistance mechanisms to several antimicrobial agents, but also has the capacity to acquire new mechanisms of antimicrobial resistance In this review we analyze the diversity of enterococcal species and their distribution in the intestinal tract of animals Moreover, resistance mechanisms for different classes of antimicrobials of clinical relevance are reviewed, as well as the epidemiology of multidrug-resistant enterococci of animal origin, with special attention given to beta-lactams, glycopeptides, and linezolid The emergence of new antimicrobial resistance genes in enterococci of animal origin, such as optrA and cfr, is highlighted The molecular epidemiology and the population structure of E faecalis and E faecium isolates in farm and companion animals is presented Moreover, the types of plasmids that carry the antimicrobial resistance genes in enterococci of animal origin are reviewed

120 citations

Journal ArticleDOI
TL;DR: The history of E. faecium from commensal to a significant hospital-associated pathogen, its robust phenotypic characteristics, commonly used laboratory typing schemes, and antimicrobial resistances with a focus on vancomycin and its associated mechanism of resistance are reviewed.
Abstract: Enterococcus faecium is a robust opportunistic pathogen that is most commonly found as a commensal of the human and animal gut but can also survive in the environment. Since the introduction and use of antimicrobials, E. faecium has been found to rapidly acquire resistance genes that, when expressed, can effectively circumvent the effects of most antimicrobials. The rapid acquisition of multiple antimicrobial resistances has led to the adaptation of specific E. faecium clones in the hospital environment, collectively known as clonal complex 17 (CC17). CC17 E. faecium are responsible for a significant proportion of hospital-associated infections, which can cause severe morbidity and mortality. Here we review the history of E. faecium from commensal to a significant hospital-associated pathogen, its robust phenotypic characteristics, commonly used laboratory typing schemes, and antimicrobial resistances with a focus on vancomycin and its associated mechanism of resistance. Finally, we review the global epidemiology of vancomycin-resistant E. faecium and potential solutions to problems faced in public health.

88 citations