scispace - formally typeset
Search or ask a question
Author

Caterina Mariotti

Bio: Caterina Mariotti is an academic researcher from Carlo Besta Neurological Institute. The author has contributed to research in topics: Ataxia & Spinocerebellar ataxia. The author has an hindex of 53, co-authored 167 publications receiving 7735 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This work identifies AFG3L2 as a novel cause of dominant neurodegenerative disease and indicates a previously unknown role for this component of the mitochondrial protein quality control machinery in protecting the human cerebellum against neurodegenersation.
Abstract: Autosomal dominant spinocerebellar ataxias (SCAs) are genetically heterogeneous neurological disorders characterized by cerebellar dysfunction mostly due to Purkinje cell degeneration. Here we show that AFG3L2 mutations cause SCA type 28. Along with paraplegin, which causes recessive spastic paraplegia, AFG3L2 is a component of the conserved m-AAA metalloprotease complex involved in the maintenance of the mitochondrial proteome. We identified heterozygous missense mutations in five unrelated SCA families and found that AFG3L2 is highly and selectively expressed in human cerebellar Purkinje cells. m-AAA-deficient yeast cells expressing human mutated AFG3L2 homocomplex show respiratory deficiency, proteolytic impairment and deficiency of respiratory chain complex IV. Structure homology modeling indicates that the mutations may affect AFG3L2 substrate handling. This work identifies AFG3L2 as a novel cause of dominant neurodegenerative disease and indicates a previously unknown role for this component of the mitochondrial protein quality control machinery in protecting the human cerebellum against neurodegeneration.

287 citations

Journal ArticleDOI
TL;DR: It is concluded that the cholesterol biosynthetic pathway is impaired in HD cells, mice, and human subjects, and that the search for HD therapies should also consider cholesterol levels as both a potential target and disease biomarker.
Abstract: The expansion of a polyglutamine tract in the ubiquitously expressed huntingtin protein causes Huntington's disease (HD), a dominantly inherited neurodegenerative disease. We show that the activity of the cholesterol biosynthetic pathway is altered in HD. In particular, the transcription of key genes of the cholesterol biosynthetic pathway is severely affected in vivo in brain tissue from HD mice and in human postmortem striatal and cortical tissue; this molecular dysfunction is biologically relevant because cholesterol biosynthesis is reduced in cultured human HD cells, and total cholesterol mass is significantly decreased in the CNS of HD mice and in brain-derived ST14A cells in which the expression of mutant huntingtin has been turned on. The transcription of the genes of the cholesterol biosynthetic pathway is regulated via the activity of sterol regulatory element-binding proteins (SREBPs), and we found an approximately 50% reduction in the amount of the active nuclear form of SREBP in HD cells and mouse brain tissue. As a consequence, mutant huntingtin reduces the transactivation of an SRE-luciferase construct even under conditions of SREBP overexpression or in the presence of an exogenous N-terminal active form of SREBP. Finally, the addition of exogenous cholesterol to striatal neurons expressing mutant huntingtin prevents their death in a dose-dependent manner. We conclude that the cholesterol biosynthetic pathway is impaired in HD cells, mice, and human subjects, and that the search for HD therapies should also consider cholesterol levels as both a potential target and disease biomarker.

268 citations

Journal ArticleDOI
TL;DR: This Review provides guidelines, from a European perspective, for the diagnosis of Friedreich ataxia, differential diagnosis of ataxias and genetic counseling, and treatment of neurological and non-neurological symptoms.
Abstract: Friedreich ataxia is the most frequent hereditary ataxia, with an estimated prevalence of 3-4 cases per 100,000 individuals. This autosomal-recessive neurodegenerative disease is characterized by progressive gait and limb ataxia, dysarthria, lower-limb areflexia, decreased vibration sense, muscular weakness in the legs, and a positive extensor plantar response. Non-neurological signs include hypertrophic cardiomyopathy and diabetes mellitus. Symptom onset typically occurs around puberty, and life expectancy is 40-50 years. Friedreich ataxia is usually caused by a large GAA-triplet-repeat expansion within the first intron of the frataxin (FXN) gene. FXN mutations cause deficiencies of the iron-sulfur cluster-containing subunits of the mitochondrial electron transport complexes I, II, and III, and of the iron-sulfur protein aconitase. Mitochondrial dysfunction has been addressed in several open-label, non-placebo-controlled trials, which indicated that treatment with idebenone might ameliorate hypertrophic cardiomyopathy; a well-designed phase II trial suggested concentration-dependent functional improvements in non-wheelchair-bound children and adolescents. Other current experimental approaches address iron-mediated toxicity, or aim to increase FXN expression through the use of erythropoietin and histone deacetylase inhibitors. This Review provides guidelines, from a European perspective, for the diagnosis of Friedreich ataxia, differential diagnosis of ataxias and genetic counseling, and treatment of neurological and non-neurological symptoms.

231 citations

Journal ArticleDOI
TL;DR: A novel measure of disease progression and a genome-wide significant signal on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2 is generated, suggesting this mechanism as an area for future therapeutic investigation.
Abstract: Summary Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT . Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10 −10 ) on chromosome 5 spanning three genes: MSH3, DHFR , and MTRNR2L2 . The genes in this locus were associated with progression in TRACK-HD ( MSH3 p=2·94 × 10 −8 DHFR p=8·37 × 10 −7 MTRNR2L2 p=2·15 × 10 −9 ) and to a lesser extent in REGISTRY ( MSH3 p=9·36 × 10 −4 DHFR p=8·45 × 10 −4 MTRNR2L2 p=1·20 × 10 −3 ). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10 −8 ), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation. Funding The European Commission FP7 NeurOmics project; CHDI Foundation; the Medical Research Council UK; the Brain Research Trust; and the Guarantors of Brain.

225 citations

Journal ArticleDOI
01 Apr 2003-Brain
TL;DR: Differences in the disease features between eight homozygotes and 75 heterozygotes for the Huntington disease mutation point to the possibility that the mechanisms underlying age at onset and disease progression in Huntington disease may differ, and suggest that the phenotype and the rate of disease progression may differ.
Abstract: Huntington disease is caused by a dominantly transmitted CAG repeat expansion mutation that is believed to confer a toxic gain of function on the mutant protein. Huntington disease patients with two mutant alleles are very rare. In other poly(CAG) diseases such as the dominant ataxias, inheritance of two mutant alleles causes a phenotype more severe than in heterozygotes. In this multicentre study, we sought differences in the disease features between eight homozygotes and 75 heterozygotes for the Huntington disease mutation. We identified subjects homozygous for the Huntington disease mutation by DNA testing and compared their clinical features (age at onset, symptom presentation, disease severity and disease progression) with those of a group of heterozygotes, who were assessed longitudinally. The age at onset of symptoms in the homozygote cases was within the range expected for heterozygotes with the same CAG repeat lengths, whereas homozygotes had a more severe clinical course. The observation of a more rapid decline in motor, cognitive and behavioural symptoms in homozygotes was consistent with the extent of neurodegeneration as available at imaging in three patients, and at the post-mortem neuropathological report in one case. Our analysis suggests that although homozygosity for the Huntington disease mutation does not lower the age at onset of symptoms, it affects the phenotype and the rate of disease progression. These data, once confirmed in a larger series of patients, point to the possibility that the mechanisms underlying age at onset and disease progression in Huntington disease may differ.

212 citations


Cited by
More filters
Journal ArticleDOI
05 Mar 1999-Science
TL;DR: The essential role of mitochondrial oxidative phosphorylation in cellular energy production, the generation of reactive oxygen species, and the initiation of apoptosis has suggested a number of novel mechanisms for mitochondrial pathology.
Abstract: Over the past 10 years, mitochondrial defects have been implicated in a wide variety of degenerative diseases, aging, and cancer. Studies on patients with these diseases have revealed much about the complexities of mitochondrial genetics, which involves an interplay between mutations in the mitochondrial and nuclear genomes. However, the pathophysiology of mitochondrial diseases has remained perplexing. The essential role of mitochondrial oxidative phosphorylation in cellular energy production, the generation of reactive oxygen species, and the initiation of apoptosis has suggested a number of novel mechanisms for mitochondrial pathology. The importance and interrelationship of these functions are now being studied in mouse models of mitochondrial disease.

2,950 citations

Journal ArticleDOI
TL;DR: After a long lag period, therapeutic and other interventions based on a knowledge of redox biology are on the horizon for at least some of the neurodegenerative diseases.
Abstract: The brain and nervous system are prone to oxidative stress, and are inadequately equipped with antioxidant defense systems to prevent 'ongoing' oxidative damage, let alone the extra oxidative damage imposed by the neurodegenerative diseases. Indeed, increased oxidative damage, mitochondrial dysfunction, accumulation of oxidized aggregated proteins, inflammation, and defects in protein clearance constitute complex intertwined pathologies that conspire to kill neurons. After a long lag period, therapeutic and other interventions based on a knowledge of redox biology are on the horizon for at least some of the neurodegenerative diseases.

2,430 citations

Journal ArticleDOI
TL;DR: Effective intervention by clinicians is possible in terms of providing patients and families with accurate information about the disease, counseling them about availability of genetic testing at specialized centers, and in giving them sound advice regarding work, driving, relationships, finances, research participation, and support groups.

2,196 citations

Journal ArticleDOI
TL;DR: This review explores the advances that have been made and the areas in which future progress is likely in understanding basic mitochondrial genetics and the relationship between inherited mutations and disease phenotypes, and in identifying acquired mtDNA mutations in both ageing and cancer.
Abstract: The human mitochondrial genome is extremely small compared with the nuclear genome, and mitochondrial genetics presents unique clinical and experimental challenges. Despite the diminutive size of the mitochondrial genome, mitochondrial DNA (mtDNA) mutations are an important cause of inherited disease. Recent years have witnessed considerable progress in understanding basic mitochondrial genetics and the relationship between inherited mutations and disease phenotypes, and in identifying acquired mtDNA mutations in both ageing and cancer. However, many challenges remain, including the prevention and treatment of these diseases. This review explores the advances that have been made and the areas in which future progress is likely.

1,525 citations