scispace - formally typeset
Search or ask a question
Author

† Cathal O'Farrell

Bio: † Cathal O'Farrell is an academic researcher from Novartis. The author has contributed to research in topics: Cannabinoid receptor & Agonist. The author has an hindex of 1, co-authored 1 publications receiving 88 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A new class of cannabinoid ligands was rationally designed from known aminoalkylindole agonists and showed good binding and functional activities at human CB1 and CB2 receptors, which led to the discovery of a novel CB1/CB2 dual agonist, naphthalen-1-yl-(4-pentyloxynaphthalanone), which displays good oral bioavailability, potent antihyperalgesic activity in animal models, and limited brain penetration.
Abstract: Selective activation of peripheral cannabinoid CB1 receptors has the potential to become a valuable therapy for chronic pain conditions as long as central nervous system effects are attenuated. A new class of cannabinoid ligands was rationally designed from known aminoalkylindole agonists and showed good binding and functional activities at human CB1 and CB2 receptors. This has led to the discovery of a novel CB1/CB2 dual agonist, naphthalen-1-yl-(4-pentyloxynaphthalen-1-yl)methanone (13), which displays good oral bioavailability, potent antihyperalgesic activity in animal models, and limited brain penetration.

93 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that aCB1R neutral antagonist largely restricted to the periphery does not affect behavioral responses mediated by CB1R in the brains of mice with genetic or diet-induced obesity, but it does cause weight-independent improvements in glucose homeostasis, fatty liver, and plasma lipid profile.
Abstract: Obesity and its metabolic consequences are a major public health concern worldwide. Obesity is associated with overactivity of the endocannabinoid system, which is involved in the regulation of appetite, lipogenesis, and insulin resistance. Cannabinoid-1 receptor (CB1R) antagonists reduce body weight and improve cardiometabolic abnormalities in experimental and human obesity, but their therapeutic potential is limited by neuropsychiatric side effects. Here we have demonstrated that a CB1R neutral antagonist largely restricted to the periphery does not affect behavioral responses mediated by CB1R in the brains of mice with genetic or diet-induced obesity, but it does cause weight-independent improvements in glucose homeostasis, fatty liver, and plasma lipid profile. These effects were due to blockade of CB1R in peripheral tissues, including the liver, as verified through the use of CB1R-deficient mice with or without transgenic expression of CB1R in the liver. These results suggest that targeting peripheral CB1R has therapeutic potential for alleviating cardiometabolic risk in obese patients.

428 citations

Journal ArticleDOI
TL;DR: Five strategies that have the potential to meet either the efficacy and/or the benefit‐to‐risk ratio of a cannabinoid receptor agonist are focused on.
Abstract: Medicines that activate cannabinoid CB(1) and CB(2) receptor are already in the clinic. These are Cesamet (nabilone), Marinol (dronabinol; Delta(9)-tetrahydrocannabinol) and Sativex (Delta(9)-tetrahydrocannabinol with cannabidiol). The first two of these medicines can be prescribed to reduce chemotherapy-induced nausea and vomiting. Marinol can also be prescribed to stimulate appetite, while Sativex is prescribed for the symptomatic relief of neuropathic pain in adults with multiple sclerosis and as an adjunctive analgesic treatment for adult patients with advanced cancer. One challenge now is to identify additional therapeutic targets for cannabinoid receptor agonists, and a number of potential clinical applications for such agonists are mentioned in this review. A second challenge is to develop strategies that will improve the efficacy and/or the benefit-to-risk ratio of a cannabinoid receptor agonist. This review focuses on five strategies that have the potential to meet either or both of these objectives. These are strategies that involve: (i) targeting cannabinoid receptors located outside the blood-brain barrier; (ii) targeting cannabinoid receptors expressed by a particular tissue; (iii) targeting up-regulated cannabinoid receptors; (iv) targeting cannabinoid CB(2) receptors; or (v) 'multi-targeting'. Preclinical data that justify additional research directed at evaluating the clinical importance of each of these strategies are also discussed.

407 citations

Journal ArticleDOI
TL;DR: Cannabis has been used to treat gastrointestinal (GI) conditions that range from enteric infections and inflammatory conditions to disorders of motility, emesis and abdominal pain, with recent data on genetic mutations in the endocannabinoid system in GI disease highlighted.

373 citations

Journal ArticleDOI
TL;DR: The current development of drugs that alter endocannabinoid signalling and how this complex system could be pharmacologically manipulated in the future are described in this Opinion article.
Abstract: The endocannabinoid signalling system was discovered because receptors in this system are the targets of compounds present in psychotropic preparations of Cannabis sativa. The search for new therapeutics that target endocannabinoid signalling is both challenging and potentially rewarding, as endocannabinoids are implicated in numerous physiological and pathological processes. Hundreds of mediators chemically related to the endocannabinoids, often with similar metabolic pathways but different targets, have complicated the development of inhibitors of endocannabinoid metabolic enzymes but have also stimulated the rational design of multi-target drugs. Meanwhile, drugs based on botanical cannabinoids have come to the clinical forefront, synthetic agonists designed to bind cannabinoid receptor 1 with very high affinity have become a societal threat and the gut microbiome has been found to signal in part through the endocannabinoid network. The current development of drugs that alter endocannabinoid signalling and how this complex system could be pharmacologically manipulated in the future are described in this Opinion article.

316 citations

Journal ArticleDOI
TL;DR: This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists and describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic.
Abstract: Human tissues express cannabinoid CB(1) and CB(2) receptors that can be activated by endogenously released 'endocannabinoids' or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB(1)/CB(2) receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ(9)-tetrahydrocannabinol (Δ(9)-THC)) and Sativex (Δ(9)-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson's and Huntington's diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB(2) receptors, and/or (v) adjunctive 'multi-targeting'.

306 citations