scispace - formally typeset
Search or ask a question
Author

Catherine D. McCusker

Bio: Catherine D. McCusker is an academic researcher from University of Massachusetts Boston. The author has contributed to research in topics: Regeneration (biology) & Blastema. The author has an hindex of 17, co-authored 29 publications receiving 2269 citations. Previous affiliations of Catherine D. McCusker include University of Massachusetts Amherst & University of California, Irvine.

Papers
More filters
Journal ArticleDOI
TL;DR: Concentration-dependent lysis mediated by initial electrostatic binding was observed in dye release studies using lipid vesicles, providing the probable mechanism for observed toxicity with the cationic MMPCs.

1,471 citations

Journal ArticleDOI
TL;DR: Quaternary ammonium functionalized polyhedral oligomeric silsesquioxane units, widely employed as additives in ceramic and polymeric systems, possess many attributes which make them attractive as biocompatible drug carriers: nanoscale size, three-dimensional functionality, efficient cellular uptake, low toxicity, and high solubility.

169 citations

Journal ArticleDOI
01 Apr 2015
TL;DR: This review focuses on the crucial early events that occur during wound healing, the neural-epithelial interactions that drive the formation of the early blastema, and how these mechanisms differ from those of other species that have restricted regenerative potential, such as humans.
Abstract: The axolotl is one of the few tetrapods that are capable of regenerating complicated biological structures, such as complete limbs, throughout adulthood. Upon injury the axolotl generates a population of regeneration-competent limb progenitor cells known as the blastema, which will grow, establish pattern, and differentiate into the missing limb structures. In this review we focus on the crucial early events that occur during wound healing, the neural-epithelial interactions that drive the formation of the early blastema, and how these mechanisms differ from those of other species that have restricted regenerative potential, such as humans. We also discuss how the presence of cells from the different axes of the limb is required for the continued growth and establishment of pattern in the blastema as described in the polar coordinate model, and how this positional information is reprogrammed in blastema cells during regeneration. Multiple cell types from the mature limb stump contribute to the blastema at different stages of regeneration, and we discuss the contribution of these types to the regenerate with reference to whether they are "pattern-forming" or "pattern-following" cells. Lastly, we explain how an engineering approach will help resolve unanswered questions in limb regeneration, with the goal of translating these concepts to developing better human regenerative therapies.

141 citations

Journal ArticleDOI
TL;DR: It is proposed that ADAM cleavage of cadherin-11 promotes migration by modifying its ability to support cell-cell adhesion while maintaining the membrane-bound pool of beta-catenin associated with the cadherIn-11 cytoplasmic domain.
Abstract: Cell adhesion molecules such as cadherins alternate their expression throughout cranial neural crest (CNC) development, yet our understanding of the role of these molecules during CNC migration remains incomplete. The “mesenchymal” cadherin-11 is expressed in the CNC during migration yet prevents migration when overexpressed in the embryo, suggesting that a defined level of cadherin-11–mediated cell adhesion is required for migration. Here we show that members of the meltrin subfamily of ADAM metalloproteases cleave the extracellular domain of cadherin-11 during CNC migration. We show that a fragment corresponding to the putative shed form of cadherin-11 retains biological activity by promoting CNC migration in vivo, in a non-cell–autonomous manner. Additionally, cleavage of cadherin-11 does not affect binding to β-catenin and downstream signaling events. We propose that ADAM cleavage of cadherin-11 promotes migration by modifying its ability to support cell–cell adhesion while maintaining the membrane-bound pool of β-catenin associated with the cadherin-11 cytoplasmic domain.

98 citations

Journal ArticleDOI
TL;DR: An overview of several important aspects of regeneration biology with an emphasis on the Mexican axolotl (Ambystoma mexicanum) as a model organism for identifying relevant signaling pathways and factors regulating limb regeneration and speculate about how these mechanisms could be utilized to reverse the aging process.
Abstract: Although regeneration of tissues occurs in all adult tetrapods, the ability to regenerate complex structures such as limbs is limited to urodeles (newts and salamanders). Given that many of the biological processes and the signaling pathways that control these processes are highly conserved among all tetrapods, it is likely that humans have the potential to regenerate structures in the same way as salamanders. Thus the remarkable regenerative abilities of salamanders demonstrate what we reasonably can expect in terms of enhancing our regenerative potential. Although most of what is understood about regenerative mechanisms pertains to the repair of acute injuries, we assume that these same mechanisms could be utilized therapeutically to slow or even reverse chronic damage associated with aging. The axolotl model provides the opportunity to understand the behavior of cells to give the desired outcome of controlled growth and pattern formation leading to regeneration rather than aging and cancer. In this paper we present an overview of several important aspects of regeneration biology with an emphasis on the Mexican axolotl (Ambystoma mexicanum) as a model organism for identifying relevant signaling pathways and factors regulating limb regeneration. We also speculate about how these mechanisms could be utilized to reverse the aging process. By understanding the mechanisms of regeneration, we eventually will be able to enhance our intrinsic regenerative abilities in order to slow and even reverse the damage of aging.

88 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Probing the various interfaces of nanoparticle/biological interfaces allows the development of predictive relationships between structure and activity that are determined by nanomaterial properties such as size, shape, surface chemistry, roughness and surface coatings.
Abstract: Rapid growth in nanotechnology is increasing the likelihood of engineered nanomaterials coming into contact with humans and the environment. Nanoparticles interacting with proteins, membranes, cells, DNA and organelles establish a series of nanoparticle/biological interfaces that depend on colloidal forces as well as dynamic biophysicochemical interactions. These interactions lead to the formation of protein coronas, particle wrapping, intracellular uptake and biocatalytic processes that could have biocompatible or bioadverse outcomes. For their part, the biomolecules may induce phase transformations, free energy releases, restructuring and dissolution at the nanomaterial surface. Probing these various interfaces allows the development of predictive relationships between structure and activity that are determined by nanomaterial properties such as size, shape, surface chemistry, roughness and surface coatings. This knowledge is important from the perspective of safe use of nanomaterials.

6,075 citations

Journal ArticleDOI
TL;DR: The intracellular uptake of different sized and shaped colloidal gold nanoparticles is investigated and it is shown that kinetics and saturation concentrations are highly dependent upon the physical dimensions of the nanoparticles.
Abstract: We investigated the intracellular uptake of different sized and shaped colloidal gold nanoparticles. We showed that kinetics and saturation concentrations are highly dependent upon the physical dimensions of the nanoparticles (e.g., uptake half-life of 14, 50, and 74 nm nanoparticles is 2.10, 1.90, and 2.24 h, respectively). The findings from this study will have implications in the chemical design of nanostructures for biomedical applications (e.g., tuning intracellular delivery rates and amounts by nanoscale dimensions and engineering complex, multifunctional nanostructures for imaging and therapeutics).

4,383 citations

Posted Content
TL;DR: A review of the toxicity of nanoparticles is presented in this paper, with the goal of informing public health concerns related to nanoscience while raising awareness of nanomaterials toxicity among scientists and manufacturers handling them.
Abstract: This review is written with the goal of informing public health concerns related to nanoscience, while raising awareness of nanomaterials toxicity among scientists and manufacturers handling them. We show that humans have always been exposed to nanoparticles and dust from natural sources and human activities, the recent development of industry and combustion-based engine transportation profoundly increasing anthropogenic nanoparticulate pollution. The key to understanding the toxicity of nanoparticles is that their minute size, smaller than cells and cellular organelles, allows them to penetrate these basic biological structures, disrupting their normal function. Among diseases associated with nanoparticles are asthma, bronchitis, lung cancer, neurodegenerative diseases (such as Parkinson`s and Alzheimer`s diseases), Crohn`s disease, colon cancer. Nanoparticles that enter the circulatory system are related to occurrence of arteriosclerosis, and blood clots, arrhythmia, heart diseases, and ultimately cardiac death. We show that possible adverse effects of nanoparticles on human health depend on individual factors such as genetics and existing disease, as well as exposure, and nanoparticle chemistry, size, shape, and agglomeration state. The faster we will understand their causes and mechanisms, the more likely we are to find cures for diseases associated with nanoparticle exposure. We foresee a future with better-informed, and hopefully more cautious manipulation of engineered nanomaterials, as well as the development of laws and policies for safely managing all aspects of nanomaterial manufacturing, industrial and commercial use, and recycling.

2,652 citations

Journal ArticleDOI
TL;DR: This review reveals the result of life’s long history of evolution in the presence of nanoparticles, and how the human body has adapted to defend itself against nanoparticulate intruders, while raising awareness of nanomaterials’ toxicity among scientists and manufacturers handling them.
Abstract: This review is presented as a common foundation for scientists interested in nanoparticles, their origin, activity, and biological toxicity. It is written with the goal of rationalizing and informing public health concerns related to this sometimes-strange new science of “nano,” while raising awareness of nanomaterials’ toxicity among scientists and manufacturers handling them. We show that humans have always been exposed to tiny particles via dust storms, volcanic ash, and other natural processes, and that our bodily systems are well adapted to protect us from these potentially harmful intruders. The reticuloendothelial system, in particular, actively neutralizes and eliminates foreign matter in the body, including viruses and nonbiological particles. Particles originating from human activities have existed for millennia, e.g., smoke from combustion and lint from garments, but the recent development of industry and combustion-based engine transportation has profoundly increased anthropogenic particulate pollution. Significantly, technological advancement has also changed the character of particulate pollution, increasing the proportion of nanometer-sized particles-“nanoparticles”-and expanding the variety of chemical compositions. Recent epidemiological studies have shown a strong correlation between particulate air pollution levels, respiratory and cardiovascular diseases, various cancers, and mortality. Adverse effects of nanoparticles on human health depend on individual factors such as genetics and existing disease, as well as exposure, and nanoparticle chemistry, size, shape, agglomeration state, and electromagnetic properties. Animal and human studies show that inhaled nanoparticles are less efficiently removed than larger particles by the macrophage clearance mechanisms in the lungs, causing lung damage, and that nanoparticles can translocate through the circulatory, lymphatic, and nervous systems to many tissues and organs, including the brain. The key to understanding the toxicity of nanoparticles is that their minute size, smaller than cells and cellular organelles, allows them to penetrate these basic biological structures, disrupting their normal function. Examples of toxic effects include tissue inflammation, and altered cellular redox balance toward oxidation, causing abnormal function or cell death. The manipulation of matter at the scale of atoms, “nanotechnology,” is creating many new materials with characteristics not always easily predicted from current knowledge. Within the nearly limitless diversity of these materials, some happen to be toxic to biological systems, others are relatively benign, while others confer health benefits. Some of these materials have desirable characteristics for industrial applications, as nanostructured materials often exhibit beneficial properties, from UV absorbance in sunscreen to oil-less lubrication of motors. A rational science-based approach is needed to minimize harm caused by these materials, while supporting continued study and appropriate industrial development. As current knowledge of the toxicology of “bulk” materials may not suffice in reliably predicting toxic forms of nanoparticles, ongoing and expanded study of “nanotoxicity” will be necessary. For nanotechnologies with clearly associated health risks, intelligent design of materials and devices is needed to derive the benefits of these new technologies while limiting adverse health impacts. Human exposure to toxic nanoparticles can be reduced through identifying creation-exposure pathways of toxins, a study that may someday soon unravel the mysteries of diseases such as Parkinson’s and Alzheimer’s. Reduction in fossil fuel combustion would have a large impact on global human exposure to nanoparticles, as would limiting deforestation and desertification. While nanotoxicity is a relatively new concept to science, this review reveals the result of life’s long history of evolution in the presence of nanoparticles, and how the human body, in particular, has adapted to defend itself against nanoparticulate intruders.

2,598 citations