scispace - formally typeset
Search or ask a question
Author

Catherine E. Housecroft

Other affiliations: University of Sydney, University of Valencia, Uppsala University  ...read more
Bio: Catherine E. Housecroft is an academic researcher from University of Basel. The author has contributed to research in topics: Terpyridine & Ligand. The author has an hindex of 51, co-authored 566 publications receiving 11818 citations. Previous affiliations of Catherine E. Housecroft include University of Sydney & University of Valencia.


Papers
More filters
Journal ArticleDOI
TL;DR: Dye-sensitized solar cells with carboxylate-derivatized {Cu(I)L(2)} complexes are surprisingly efficient and offer a long-term alternative approach to ruthenium-functionalized systems.

259 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyzed the performance of two ionic transition-metal complexes (iTMCs) for light-emitting electrochemical cells (LECs) and found that they exhibit long turn-on times and low external quantum efficiencies.
Abstract: The archetype ionic transition-metal complexes (iTMCs) [Ir(ppy)2(bpy)][PF6] and [Ir(ppy)2(phen)][PF6], where Hppy = 2-phenylpyridine, bpy = 2,2'-bipyridine, and phen = 1,10-phenanthroline, are used as the primary active components in light-emitting electrochemical cells (LECs). Solution and solid-state photophysical properties are reported for both complexes and are interpreted with the help of density functional theory calculations. LEC devices based on these archetype complexes exhibit long turn-on times (70 and 160 h, respectively) and low external quantum efficiencies (~ 2%) when the complex is used as a pure film. The long turn-on times are attributed to the low mobility of the counterions. The performance of the devices dramatically improves when small amounts of ionic liquids (ILs) are added to the Ir-iTMC: the turn-on time improves drastically (from hours to minutes) and the device current and power efficiency increase by almost one order of magnitude. However, the improvement of the turn-on time is unfortunately accompanied by a decrease in the stability of the device from 700 h to a few hours. After a careful study of the Ir-iTMC:IL molar ratios, an optimum between turn-on time and stability is found at a ratio of 4:1. The performance of the optimized devices using these rather simple complexes is among the best reported to date. This holds great promise for devices that use specially-designed iTMCs and demonstrates the prospect for LECs as low-cost light sources.

222 citations

Journal ArticleDOI
TL;DR: This tutorial review describes strategies for assembling copper(I) complexes for use as dyes in DSCs and demonstrates design principles for (I) ligands to anchor the complex to a semiconductor surface and promote electron transfer from dye to semiconductor, and (II) ancillary ligand to tune the light absorption properties of the dye.
Abstract: Since the discovery of Gratzel-type dye sensitized solar cells (DSCs) in the early 1990s, there has been an exponential growth in the number of publications dealing with their optimization and new design concepts. Conventional Gratzel DSCs use ruthenium(II) complexes as sensitizers, and the highest photon-to-electrical current conversion efficiency for a ruthenium dye is ≈12%. However, ruthenium is both rare and expensive, and replacement by cheaper and more sustainable metals is desirable. In this Tutorial Review, we describe strategies for assembling copper(I) complexes for use as dyes in DSCs, a research area that has been active since ≈2008. We demonstrate design principles for (i) ligands to anchor the complex to a semiconductor surface and promote electron transfer from dye to semiconductor, and (ii) ancillary ligands to tune the light absorption properties of the dye and facilitate electron transfer from electrolyte to dye in the DSC. We assess the progress made in terms of light-harvesting and overall photoconversion efficiencies of copper(I)-containing DSCs and highlight areas that remain ripe for development and improvement.

190 citations

Journal ArticleDOI
TL;DR: In this paper, light-emitting electrochemical cells with lifetimes exceeding 3000 hours at an average luminance of 200 cd m(-2) were obtained with an ionic iridium(III) complex conveniently designed to form a supramolecularly caged structure.
Abstract: Light-emitting electrochemical cells with lifetimes surpassing 3000 hours at an average luminance of 200 cd m(-2) are obtained with an ionic iridium(III) complex conveniently designed to form a supramolecularly caged structure.

179 citations

Journal ArticleDOI
TL;DR: In this paper, four prototype heteroleptic copper(I) complexes [Cu(bpy)(pop)][PF6] (bpy = 2,2′-bipyridine, pop = bis(2-(diphenylphosphino)phenyl)ether), [Cu[phen)(pop]][PF 6] (phen = 1,10-phenanthroline), [cu(ppy)(pdpb)][Pdpb]) and [Cu
Abstract: Four prototype heteroleptic copper(I) complexes [Cu(bpy)(pop)][PF6] (bpy = 2,2′-bipyridine, pop = bis(2-(diphenylphosphino)phenyl)ether), [Cu(phen)(pop)][PF6] (phen = 1,10-phenanthroline), [Cu(bpy)(pdpb)][PF6] (pdpb = 1,2-bis(diphenylphosphino)benzene) and [Cu(phen)(pdpb)][PF6] are presented. The synthesis, X-ray structures, solution and solid-state photophysical studies, and the performance in light-emitting electrochemical cells (LECs) of these complexes are described. Their photophysical properties are interpreted with the help of density functional theory (DFT) calculations. The photophysical studies in solution and in the solid-state indicate that these copper(I) complexes show good luminescent properties which allow them to be used as active materials in electroluminescent devices such as LECs. Additionally, these materials are very attractive since we can take advantage of their low-cost, due to the copper abundance, and their limited environmental damaging effects for producing cheap large-area panels based on the LEC technology for lighting applications. LEC devices were fabricated using the four prototype copper(I) complexes together with an ionic liquid (IL), 1-ethyl-3-methylimidazolium hexafluoridophosphate, at a molar ratio of 1 : 1. They yield devices that are comparable to those obtained for most LEC devices based on ruthenium(II) and iridium(III) complexes. Hence, this work shows that promising electroluminescent devices can be prepared using cheap and environmentally friendly copper(I) complexes.

179 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency as mentioned in this paper, and many DSC research groups have been established around the world.
Abstract: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency. DSC research groups have been established around the worl ...

8,707 citations

Journal Article
TL;DR: This volume is keyed to high resolution electron microscopy, which is a sophisticated form of structural analysis, but really morphology in a modern guise, the physical and mechanical background of the instrument and its ancillary tools are simply and well presented.
Abstract: I read this book the same weekend that the Packers took on the Rams, and the experience of the latter event, obviously, colored my judgment. Although I abhor anything that smacks of being a handbook (like, \"How to Earn a Merit Badge in Neurosurgery\") because too many volumes in biomedical science already evince a boyscout-like approach, I must confess that parts of this volume are fast, scholarly, and significant, with certain reservations. I like parts of this well-illustrated book because Dr. Sj6strand, without so stating, develops certain subjects on technique in relation to the acquisition of judgment and sophistication. And this is important! So, given that the author (like all of us) is somewhat deficient in some areas, and biased in others, the book is still valuable if the uninitiated reader swallows it in a general fashion, realizing full well that what will be required from the reader is a modulation to fit his vision, propreception, adaptation and response, and the kind of problem he is undertaking. A major deficiency of this book is revealed by comparison of its use of physics and of chemistry to provide understanding and background for the application of high resolution electron microscopy to problems in biology. Since the volume is keyed to high resolution electron microscopy, which is a sophisticated form of structural analysis, but really morphology in a modern guise, the physical and mechanical background of The instrument and its ancillary tools are simply and well presented. The potential use of chemical or cytochemical information as it relates to biological fine structure , however, is quite deficient. I wonder when even sophisticated morphol-ogists will consider fixation a reaction and not a technique; only then will the fundamentals become self-evident and predictable and this sine qua flon will become less mystical. Staining reactions (the most inadequate chapter) ought to be something more than a technique to selectively enhance contrast of morphological elements; it ought to give the structural addresses of some of the chemical residents of cell components. Is it pertinent that auto-radiography gets singled out for more complete coverage than other significant aspects of cytochemistry by a high resolution microscopist, when it has a built-in minimal error of 1,000 A in standard practice? I don't mean to blind-side (in strict football terminology) Dr. Sj6strand's efforts for what is \"routinely used in our laboratory\"; what is done is usually well done. It's just that …

3,197 citations

01 Dec 1991
TL;DR: In this article, self-assembly is defined as the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds.
Abstract: Molecular self-assembly is the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds. Molecular self-assembly is ubiquitous in biological systems and underlies the formation of a wide variety of complex biological structures. Understanding self-assembly and the associated noncovalent interactions that connect complementary interacting molecular surfaces in biological aggregates is a central concern in structural biochemistry. Self-assembly is also emerging as a new strategy in chemical synthesis, with the potential of generating nonbiological structures with dimensions of 1 to 10(2) nanometers (with molecular weights of 10(4) to 10(10) daltons). Structures in the upper part of this range of sizes are presently inaccessible through chemical synthesis, and the ability to prepare them would open a route to structures comparable in size (and perhaps complementary in function) to those that can be prepared by microlithography and other techniques of microfabrication.

2,591 citations

Journal ArticleDOI
TL;DR: I. Foldamer Research 3910 A. Backbones Utilizing Bipyridine Segments 3944 1.
Abstract: III. Foldamer Research 3910 A. Overview 3910 B. Motivation 3910 C. Methods 3910 D. General Scope 3912 IV. Peptidomimetic Foldamers 3912 A. The R-Peptide Family 3913 1. Peptoids 3913 2. N,N-Linked Oligoureas 3914 3. Oligopyrrolinones 3915 4. Oxazolidin-2-ones 3916 5. Azatides and Azapeptides 3916 B. The â-Peptide Family 3917 1. â-Peptide Foldamers 3917 2. R-Aminoxy Acids 3937 3. Sulfur-Containing â-Peptide Analogues 3937 4. Hydrazino Peptides 3938 C. The γ-Peptide Family 3938 1. γ-Peptide Foldamers 3938 2. Other Members of the γ-Peptide Family 3941 D. The δ-Peptide Family 3941 1. Alkene-Based δ-Amino Acids 3941 2. Carbopeptoids 3941 V. Single-Stranded Abiotic Foldamers 3944 A. Overview 3944 B. Backbones Utilizing Bipyridine Segments 3944 1. Pyridine−Pyrimidines 3944 2. Pyridine−Pyrimidines with Hydrazal Linkers 3945

1,922 citations