scispace - formally typeset
Search or ask a question
Author

Catherine Rosenberg

Bio: Catherine Rosenberg is an academic researcher from University of Waterloo. The author has contributed to research in topics: Wireless network & Scheduling (computing). The author has an hindex of 39, co-authored 239 publications receiving 7847 citations. Previous affiliations of Catherine Rosenberg include General Motors & École Normale Supérieure.


Papers
More filters
Journal ArticleDOI
TL;DR: A game theoretic framework for bandwidth allocation for elastic services in high-speed networks based on the Nash bargaining solution from cooperative game theory that can be used to characterize a rate allocation and a pricing policy which takes into account users' budget in a fair way.
Abstract: In this paper, we present a game theoretic framework for bandwidth allocation for elastic services in high-speed networks. The framework is based on the idea of the Nash bargaining solution from cooperative game theory, which not only provides the rate settings of users that are Pareto optimal from the point of view of the whole system, but are also consistent with the fairness axioms of game theory. We first consider the centralized problem and then show that this procedure can be decentralized so that greedy optimization by users yields the system optimal bandwidth allocations. We propose a distributed algorithm for implementing the optimal and fair bandwidth allocation and provide conditions for its convergence. The paper concludes with the pricing of elastic connections based on users' bandwidth requirements and users' budget. We show that the above bargaining framework can be used to characterize a rate allocation and a pricing policy which takes into account users' budget in a fair way and such that the total network revenue is maximized.

728 citations

Journal ArticleDOI
01 Jan 2004
TL;DR: A systematic cost-based analysis of both the modes of communication is presented, and results that could serve as guidelines to decide which mode should be used for given settings are provided.
Abstract: When sensor nodes are organized in clusters, they could use either single hop or multi-hop mode of communication to send their data to their respective cluster heads. We present a systematic cost-based analysis of both the modes, and provide results that could serve as guidelines to decide which mode should be used for given settings. We determine closed form expressions for the required number of cluster heads and the required battery energy of nodes for both the modes. We also propose a hybrid communication mode which is a combination of single hop and multi-hop modes, and which is more cost-effective than either of the two modes. Our problem formulation also allows for the application to be taken into account in the overall design problem through a data aggregation model.

600 citations

Journal ArticleDOI
TL;DR: A heterogeneous sensor network in which nodes are to be deployed over a unit area for the purpose of surveillance is considered, finding optimum node intensities and node energies that guarantee a lifetime of at least T units, while ensuring connectivity and coverage of the surveillance area with a high probability.
Abstract: We consider a heterogeneous sensor network in which nodes are to be deployed over a unit area for the purpose of surveillance. An aircraft visits the area periodically and gathers data about the activity in the area from the sensor nodes. There are two types of nodes that are distributed over the area using two-dimensional homogeneous Poisson point processes; type 0 nodes with intensity (average number per unit area) /spl lambda//sub 0/ and battery energy E/sub 0/; and type 1 nodes with intensity /spl lambda//sub 1/ and battery energy E/sub 1/. Type 0 nodes do the sensing while type 1 nodes act as the cluster heads besides doing the sensing. Nodes use multihopping to communicate with their closest cluster heads. We determine them optimum node intensities (/spl lambda//sub 0/, /spl lambda//sub 1/) and node energies (E/sub 0/, E/sub 1/) that guarantee a lifetime of at least T units, while ensuring connectivity and coverage of the surveillance area with a high probability. We minimize the overall cost of the network under these constraints. Lifetime is defined as the number of successful data gathering trips (or cycles) that are possible until connectivity and/or coverage are lost. Conditions for a sharp cutoff are also taken into account, i.e., we ensure that almost all the nodes run out of energy at about the same time so that there is very little energy waste due to residual energy. We compare the results for random deployment with those of a grid deployment in which nodes are placed deterministically along grid points. We observe that in both cases /spl lambda//sub 1/ scales approximately as /spl radic/(/spl lambda//sub 0/). Our results can be directly extended to take into account unreliable nodes.

486 citations

Proceedings ArticleDOI
20 Jun 2004
TL;DR: A cost based comparative study of homogeneous and heterogeneous clustered sensor networks, focusing on the case where the base station is remotely located and the sensor nodes are not mobile, shows that M-LEACH has better energy efficiency than LEACH in many cases.
Abstract: This paper presents a cost based comparative study of homogeneous and heterogeneous clustered sensor networks. We focus on the case where the base station is remotely located and the sensor nodes are not mobile. Since we are concerned with the overall network dimensioning problem, we take into account the manufacturing cost of the hardware as well as the battery energy of the nodes. A homogeneous sensor network consists of identical nodes, while a heterogeneous sensor network consists of two or more types of nodes (organized into hierarchical clusters). We first consider single hop clustered sensor networks (nodes use single hopping to reach the cluster heads). We use LEACH as the representative single hop homogeneous network, and a sensor network with two types of nodes as a representative single hop heterogeneous network. For multihop homogeneous networks (nodes use multihopping to reach the cluster head), we propose and analyze a multihop variant of LEACH that we call M-LEACH. We show that M-LEACH has better energy efficiency than LEACH in many cases. We then compare the cost of multihop clustered sensor networks with M-LEACH as the representative homogeneous network, and a sensor network with two types of nodes (that use in-cluster multi-hopping) as the representative heterogeneous network.

424 citations

Journal ArticleDOI
TL;DR: A simple association rule is proposed that performs much better than all existing user association rules and is proposed to compare the performance of three channel allocation strategies: Orthogonal deployment, Co-channel deployment, and Partially Shared deployment.
Abstract: We propose a unified static framework to study the interplay of user association and resource allocation in heterogeneous cellular networks. This framework allows us to compare the performance of three channel allocation strategies: Orthogonal deployment, Co-channel deployment, and Partially Shared deployment. We have formulated joint optimization problems that are non-convex integer programs, are NP-hard, and hence it is difficult to efficiently obtain exact solutions. We have, therefore, developed techniques to obtain upper bounds on the system's performance. We show that these upper bounds are tight by comparing them to feasible solutions. We have used these upper bounds as benchmarks to quantify how well different user association rules and resource allocation schemes perform. Our numerical results indicate that significant gains in throughput are achievable for heterogeneous networks if the right combination of user association and resource allocation is used. Noting the significant impact of the association rule on the performance, we propose a simple association rule that performs much better than all existing user association rules.

344 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.
Abstract: What will 5G be? What it will not be is an incremental advance on 4G. The previous four generations of cellular technology have each been a major paradigm shift that has broken backward compatibility. Indeed, 5G will need to be a paradigm shift that includes very high carrier frequencies with massive bandwidths, extreme base station and device densities, and unprecedented numbers of antennas. However, unlike the previous four generations, it will also be highly integrative: tying any new 5G air interface and spectrum together with LTE and WiFi to provide universal high-rate coverage and a seamless user experience. To support this, the core network will also have to reach unprecedented levels of flexibility and intelligence, spectrum regulation will need to be rethought and improved, and energy and cost efficiencies will become even more critical considerations. This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.

7,139 citations

Journal ArticleDOI
TL;DR: It is proved that, with appropriate bounds on node density and intracluster and intercluster transmission ranges, HEED can asymptotically almost surely guarantee connectivity of clustered networks.
Abstract: Topology control in a sensor network balances load on sensor nodes and increases network scalability and lifetime. Clustering sensor nodes is an effective topology control approach. We propose a novel distributed clustering approach for long-lived ad hoc sensor networks. Our proposed approach does not make any assumptions about the presence of infrastructure or about node capabilities, other than the availability of multiple power levels in sensor nodes. We present a protocol, HEED (Hybrid Energy-Efficient Distributed clustering), that periodically selects cluster heads according to a hybrid of the node residual energy and a secondary parameter, such as node proximity to its neighbors or node degree. HEED terminates in O(1) iterations, incurs low message overhead, and achieves fairly uniform cluster head distribution across the network. We prove that, with appropriate bounds on node density and intracluster and intercluster transmission ranges, HEED can asymptotically almost surely guarantee connectivity of clustered networks. Simulation results demonstrate that our proposed approach is effective in prolonging the network lifetime and supporting scalable data aggregation.

4,889 citations

Book ChapterDOI
01 Jan 2011
TL;DR: Weakconvergence methods in metric spaces were studied in this article, with applications sufficient to show their power and utility, and the results of the first three chapters are used in Chapter 4 to derive a variety of limit theorems for dependent sequences of random variables.
Abstract: The author's preface gives an outline: "This book is about weakconvergence methods in metric spaces, with applications sufficient to show their power and utility. The Introduction motivates the definitions and indicates how the theory will yield solutions to problems arising outside it. Chapter 1 sets out the basic general theorems, which are then specialized in Chapter 2 to the space C[0, l ] of continuous functions on the unit interval and in Chapter 3 to the space D [0, 1 ] of functions with discontinuities of the first kind. The results of the first three chapters are used in Chapter 4 to derive a variety of limit theorems for dependent sequences of random variables. " The book develops and expands on Donsker's 1951 and 1952 papers on the invariance principle and empirical distributions. The basic random variables remain real-valued although, of course, measures on C[0, l ] and D[0, l ] are vitally used. Within this framework, there are various possibilities for a different and apparently better treatment of the material. More of the general theory of weak convergence of probabilities on separable metric spaces would be useful. Metrizability of the convergence is not brought up until late in the Appendix. The close relation of the Prokhorov metric and a metric for convergence in probability is (hence) not mentioned (see V. Strassen, Ann. Math. Statist. 36 (1965), 423-439; the reviewer, ibid. 39 (1968), 1563-1572). This relation would illuminate and organize such results as Theorems 4.1, 4.2 and 4.4 which give isolated, ad hoc connections between weak convergence of measures and nearness in probability. In the middle of p. 16, it should be noted that C*(S) consists of signed measures which need only be finitely additive if 5 is not compact. On p. 239, where the author twice speaks of separable subsets having nonmeasurable cardinal, he means "discrete" rather than "separable." Theorem 1.4 is Ulam's theorem that a Borel probability on a complete separable metric space is tight. Theorem 1 of Appendix 3 weakens completeness to topological completeness. After mentioning that probabilities on the rationals are tight, the author says it is an

3,554 citations

01 Apr 2003
TL;DR: The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it as mentioned in this paper, and also presents new ideas and alternative interpretations which further explain the success of the EnkF.
Abstract: The purpose of this paper is to provide a comprehensive presentation and interpretation of the Ensemble Kalman Filter (EnKF) and its numerical implementation. The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it. This paper reviews the important results from these studies and also presents new ideas and alternative interpretations which further explain the success of the EnKF. In addition to providing the theoretical framework needed for using the EnKF, there is also a focus on the algorithmic formulation and optimal numerical implementation. A program listing is given for some of the key subroutines. The paper also touches upon specific issues such as the use of nonlinear measurements, in situ profiles of temperature and salinity, and data which are available with high frequency in time. An ensemble based optimal interpolation (EnOI) scheme is presented as a cost-effective approach which may serve as an alternative to the EnKF in some applications. A fairly extensive discussion is devoted to the use of time correlated model errors and the estimation of model bias.

2,975 citations

Journal ArticleDOI
01 May 1975
TL;DR: The Fundamentals of Queueing Theory, Fourth Edition as discussed by the authors provides a comprehensive overview of simple and more advanced queuing models, with a self-contained presentation of key concepts and formulae.
Abstract: Praise for the Third Edition: "This is one of the best books available. Its excellent organizational structure allows quick reference to specific models and its clear presentation . . . solidifies the understanding of the concepts being presented."IIE Transactions on Operations EngineeringThoroughly revised and expanded to reflect the latest developments in the field, Fundamentals of Queueing Theory, Fourth Edition continues to present the basic statistical principles that are necessary to analyze the probabilistic nature of queues. Rather than presenting a narrow focus on the subject, this update illustrates the wide-reaching, fundamental concepts in queueing theory and its applications to diverse areas such as computer science, engineering, business, and operations research.This update takes a numerical approach to understanding and making probable estimations relating to queues, with a comprehensive outline of simple and more advanced queueing models. Newly featured topics of the Fourth Edition include:Retrial queuesApproximations for queueing networksNumerical inversion of transformsDetermining the appropriate number of servers to balance quality and cost of serviceEach chapter provides a self-contained presentation of key concepts and formulae, allowing readers to work with each section independently, while a summary table at the end of the book outlines the types of queues that have been discussed and their results. In addition, two new appendices have been added, discussing transforms and generating functions as well as the fundamentals of differential and difference equations. New examples are now included along with problems that incorporate QtsPlus software, which is freely available via the book's related Web site.With its accessible style and wealth of real-world examples, Fundamentals of Queueing Theory, Fourth Edition is an ideal book for courses on queueing theory at the upper-undergraduate and graduate levels. It is also a valuable resource for researchers and practitioners who analyze congestion in the fields of telecommunications, transportation, aviation, and management science.

2,562 citations