scispace - formally typeset
Search or ask a question
Author

Catherine S. Harvey

Bio: Catherine S. Harvey is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Homologous recombination & Holliday junction. The author has an hindex of 1, co-authored 2 publications receiving 2 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The authors showed that break repair in both noncrossovers and crossover-specific double Holliday junction formation occurs via processes involving branch migration as an integral feature, one that can be separated from repair of the break itself.

19 citations

Posted ContentDOI
21 Apr 2021-bioRxiv
TL;DR: The authors showed that break repair in both noncrossovers and crossover-specific double Holliday junction formation occurs via processes that involve branch migration as an integral feature and that can be separated from break repair itself.
Abstract: Currently favored models for meiotic recombination posit that both noncrossover and crossover recombination are initiated by DNA double strand breaks but form by different mechanisms, noncrossovers by synthesis dependent strand annealing, and crossovers by formation and resolution of double Holliday junctions centered around the break. This dual mechanism hypothesis predicts different hybrid DNA patterns in noncrossover and crossover recombinants. We show that these predictions are not upheld, by mapping with unprecedented resolution, parental strand contributions to recombinants at a model locus. Instead, break repair in both noncrossovers and crossovers involves synthesis-dependent strand annealing, often with multiple rounds of strand invasion. Crossover-specific double Holliday junction formation occurs via processes that involve branch migration as an integral feature and that can be separated from break repair itself. These findings reveal meiotic recombination to be a highly dynamic process and prompt a new view of the relationship between crossover and noncrossover recombination.

4 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In the first complete assembly of a human genome, the Telomere-to-Telomere Consortium's CHM13 assembly (T2T-CHM13) provided a model of their homology as mentioned in this paper .
Abstract: The short arms of the human acrocentric chromosomes 13, 14, 15, 21 and 22 (SAACs) share large homologous regions, including ribosomal DNA repeats and extended segmental duplications1,2. Although the resolution of these regions in the first complete assembly of a human genome-the Telomere-to-Telomere Consortium's CHM13 assembly (T2T-CHM13)-provided a model of their homology3, it remained unclear whether these patterns were ancestral or maintained by ongoing recombination exchange. Here we show that acrocentric chromosomes contain pseudo-homologous regions (PHRs) indicative of recombination between non-homologous sequences. Utilizing an all-to-all comparison of the human pangenome from the Human Pangenome Reference Consortium4 (HPRC), we find that contigs from all of the SAACs form a community. A variation graph5 constructed from centromere-spanning acrocentric contigs indicates the presence of regions in which most contigs appear nearly identical between heterologous acrocentric chromosomes in T2T-CHM13. Except on chromosome 15, we observe faster decay of linkage disequilibrium in the pseudo-homologous regions than in the corresponding short and long arms, indicating higher rates of recombination6,7. The pseudo-homologous regions include sequences that have previously been shown to lie at the breakpoint of Robertsonian translocations8, and their arrangement is compatible with crossover in inverted duplications on chromosomes 13, 14 and 21. The ubiquity of signals of recombination between heterologous acrocentric chromosomes seen in the HPRC draft pangenome suggests that these shared sequences form the basis for recurrent Robertsonian translocations, providing sequence and population-based confirmation of hypotheses first developed from cytogenetic studies 50 years ago9.

12 citations

Journal ArticleDOI
07 Apr 2022-Heredity
TL;DR: Meiosis is a specialised, reductional cell division which generates haploid gametes (reproductive cells) carrying a single chromosome complement from diploid progenitor cells harboring two chromosome sets as mentioned in this paper .
Abstract: Meiosis is undoubtedly the mechanism that underpins Mendelian genetics. Meiosis is a specialised, reductional cell division which generates haploid gametes (reproductive cells) carrying a single chromosome complement from diploid progenitor cells harbouring two chromosome sets. Through this process, the hereditary material is shuffled and distributed into haploid gametes such that upon fertilisation, when two haploid gametes fuse, diploidy is restored in the zygote. During meiosis the transient physical connection of two homologous chromosomes (one originally inherited from each parent) each consisting of two sister chromatids and their subsequent segregation into four meiotic products (gametes), is what enables genetic marker assortment forming the core of Mendelian laws. The initiating events of meiotic recombination are DNA double-strand breaks (DSBs) which need to be repaired in a certain way to enable the homologous chromosomes to find each other. This is achieved by DSB ends searching for homologous repair templates and invading them. Ultimately, the repair of meiotic DSBs by homologous recombination physically connects homologous chromosomes through crossovers. These physical connections provided by crossovers enable faithful chromosome segregation. That being said, the DSB repair mechanism integral to meiotic recombination also produces genetic transmission distortions which manifest as postmeiotic segregation events and gene conversions. These processes are non-reciprocal genetic exchanges and thus non-Mendelian.

8 citations

Posted ContentDOI
12 May 2022-bioRxiv
TL;DR: A novel approach that uses a bacterial ParB-parS partition system to recruit axis proteins at high levels to inserts at recombination coldspots where Hop1 and Red1 levels are normally low is developed, raising the intriguing possibility that different recombination pathways operate in different parts of the genome.
Abstract: The DNA double strand breaks (DSBs) that initiate meiotic recombination are formed in the context of the meiotic chromosome axis, which in budding yeast contains a meiosis-specific cohesin isoform and the meiosis-specific proteins Hop1 and Red1. Hop1 and Red are important for DSB formation; DSB levels are reduced in their absence and their levels, which vary along the lengths of chromosomes, are positively correlated with DSB levels. How axis protein levels influence DSB formation and recombination remains unclear. To address this question, we developed a novel approach that uses a bacterial ParB-parS partition system to recruit axis proteins at high levels to inserts at recombination coldspots where Hop1 and Red1 levels are normally low. Recruiting Hop1 markedly increased DSBs and homologous recombination at target loci, to levels equivalent to those observed at endogenous recombination hotspots. This local increase in DSBs did not require Red1 or the meiosis-specific cohesin component Rec8, indicating that, of the axis proteins, Hop1 is sufficient to promote DSB formation. However, while most crossovers at endogenous recombination hotspots are formed by the meiosis-specific MutLγ resolvase, only a small fraction of crossovers that formed at an insert locus required MutLγ, regardless of whether or not Hop1 was recruited to that locus. Thus, while local Hop1 levels determine local DSB levels, the recombination pathways that repair these breaks can be determined by other factors, raising the intriguing possibility that different recombination pathways operate in different parts of the genome.

3 citations

Journal ArticleDOI
TL;DR: In this article , random diffusion and the placement of a small number of linkages are sufficient to establish the apparent "pairing" of homologs, and colocalization between any two loci is more dynamic than anticipated.
Abstract: SignificanceEssential for sexual reproduction, meiosis is a specialized cell division required for the production of haploid gametes. Critical to this process are the pairing, recombination, and segregation of homologous chromosomes (homologs). While pairing and recombination are linked, it is not known how many linkages are sufficient to hold homologs in proximity. Here, we reveal that random diffusion and the placement of a small number of linkages are sufficient to establish the apparent "pairing" of homologs. We also show that colocalization between any two loci is more dynamic than anticipated. Our study provides observations of live interchromosomal dynamics during meiosis and illustrates the power of combining single-cell measurements with theoretical polymer modeling.

3 citations

Posted ContentDOI
23 Sep 2021-bioRxiv
Abstract: The pairing of homologous chromosomes (homologs) in meiosis is essential for distributing the correct numbers of chromosomes into haploid gametes. In budding yeast, pairing depends on the formation of 150-200 Spo11-mediated double-strand breaks (DSBs) that are distributed among 16 homolog pairs, but it is not known if all, or only a subset of these DSBs, contribute to the close juxtaposition of homologs. Having established a system to measure the position of fluorescently tagged chromosomal loci in 3D space over time, we analyzed locus trajectories to determine how frequently, and how long, loci spend colocalized or apart. Continuous imaging revealed highly heterogeneous cell-to-cell behavior of foci, with the majority of cells exhibiting a 99mixed99 phenotype where foci move into and out of proximity, even at late stages of prophase, suggesting that the axial structures of the synaptonemal complex may be more dynamic than anticipated. The observed plateaus of the mean-squared change in distance (MSCD) between foci informed the development of a biophysical model of two diffusing polymers that captures the loss of centromere linkages as cells enter meiosis, nuclear confinement, and the formation of Spo11-dependent linkages. The predicted number of linkages per chromosome in our theoretical model closely approximates the small number (2-4) of estimated synapsis-initiation sites, suggesting that excess DSBs have negligible effects on the overall juxtaposition of homologs. These insights into the dynamic interchromosomal behavior displayed during homolog pairing demonstrate the power of combining time-resolved in vivo analysis with modeling at the granular level.

3 citations