scispace - formally typeset
Search or ask a question
Author

Catherine Tucker

Bio: Catherine Tucker is an academic researcher. The author has contributed to research in topics: Pneumonia & Betacoronavirus. The author has an hindex of 2, co-authored 2 publications receiving 1562 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that baricitinib could be trialled, using an appropriate patient population with 2019-nCoV acute respiratory disease, to reduce both the viral entry and the inflammation in patients, using endpoints such as the MuLBSTA score, an early warning model for predicting mortality in viral pneumonia.

1,170 citations

Journal ArticleDOI
TL;DR: Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury, and convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection.
Abstract: 400 www.thelancet.com/infection Vol 20 April 2020 5 WHO. Use of convalescent whole blood or plasma collected from patients recovered from Ebola virus disease for transfusion, as an empirical treatment during outbreaks. 2014. http://apps.who.int/iris/rest/ bitstreams/604045/retrieve (accessed Feb 20, 2020). 6 Arabi Y, Balkhy H, Hajeer AH. Feasibility, safety, clinical, and laboratory effects of convalescent plasma therapy for patients with Middle East respiratory syndrome coronavirus infection: a study protocol. Springerplus 2015; 4: 709. 7 Hung IF, To KK, Lee CK, et al. Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection. Clin Infect Dis 2011; 52: 447–56. 8 Hung IFN, To KKW, Lee CK, et al. Hyperimmune IV immunoglobulin treatment: a multicenter double-blind randomized controlled trial for patients with severe 2009 influenza A(H1N1) infection. Chest 2013; 144: 464–73. 9 Mair-Jenkins J, Saavedra-Campos M, Baillie JK, et al. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J Infect Dis 2015; 211: 80–90. 10 Luke TC, Kilbane EM, Jackson JL, Hoffman SL. Meta-analysis: convalescent blood products for Spanish influenza pneumonia: a future H5N1 treatment? Ann Intern Med 2006; 145: 599–609. 15 Schoofs T, Klein F, Braunschweig M, et al. HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1. Science 2016; 352: 997–1001. 12 Lu CL, Murakowski DK, Bournazos S, et al. Enhanced clearance of HIV-1-infected cells by broadly neutralizing antibodies against HIV-1 in vivo. Science 2016; 352: 1001–04. 13 WHO. Clinical management of severe acute respiratory infection when novel coronavirus (nCoV) infection is suspected. 2020. https://www.who. int/docs/default-source/coronaviruse/clinical-management-of-novel-cov. pdf (accessed Feb 20, 2020). 14 Clark DR, Jonathan EM, JKB. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 2020; published online Feb 7. https://doi.org/10.1016/S0140-6736(20)30317-2.

923 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Re-analysis of data from a phase 3 randomised controlled trial of IL-1 blockade (anakinra) in sepsis, showed significant survival benefit in patients with hyperinflammation, without increased adverse events.

7,493 citations

Journal ArticleDOI
TL;DR: The interaction of SARS-CoV-2 with the immune system and the subsequent contribution of dysfunctional immune responses to disease progression is described and the implications of these approaches for potential therapeutic interventions that target viral infection and/or immunoregulation are highlighted.
Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic. Alongside investigations into the virology of SARS-CoV-2, understanding the fundamental physiological and immunological processes underlying the clinical manifestations of COVID-19 is vital for the identification and rational design of effective therapies. Here, we provide an overview of the pathophysiology of SARS-CoV-2 infection. We describe the interaction of SARS-CoV-2 with the immune system and the subsequent contribution of dysfunctional immune responses to disease progression. From nascent reports describing SARS-CoV-2, we make inferences on the basis of the parallel pathophysiological and immunological features of the other human coronaviruses targeting the lower respiratory tract - severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). Finally, we highlight the implications of these approaches for potential therapeutic interventions that target viral infection and/or immunoregulation.

3,236 citations

Journal ArticleDOI
TL;DR: The approaches for developing effective vaccines and therapeutic combinations to cope with this viral outbreak are discussed and the emergence and pathogenicity of COVID-19 infection and previous human coronaviruses severe acute respiratory syndrome coronavirus (SARS-CoV) and middle east respiratory virus (MERS- coV) is analyzed.

2,643 citations

20 Mar 2020
TL;DR: The effects of the epidemic caused by the new CoV has yet to emerge as the situation is quickly evolving, and world governments are at work to establish countermeasures to stem possible devastating effects.
Abstract: According to the World Health Organization (WHO), viral diseases continue to emerge and represent a serious issue to public health In the last twenty years, several viral epidemics such as the severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002 to 2003, and H1N1 influenza in 2009, have been recorded Most recently, the Middle East respiratory syndrome coronavirus (MERS-CoV) was first identified in Saudi Arabia in 2012 In a timeline that reaches the present day, an epidemic of cases with unexplained low respiratory infections detected in Wuhan, the largest metropolitan area in China's Hubei province, was first reported to the WHO Country Office in China, on December 31, 2019 Published literature can trace the beginning of symptomatic individuals back to the beginning of December 2019 As they were unable to identify the causative agent, these first cases were classified as "pneumonia of unknown etiology " The Chinese Center for Disease Control and Prevention (CDC) and local CDCs organized an intensive outbreak investigation program The etiology of this illness is now attributed to a novel virus belonging to the coronavirus (CoV) family, COVID-19 On February 11, 2020, the WHO Director-General, Dr Tedros Adhanom Ghebreyesus, announced that the disease caused by this new CoV was a "COVID-19," which is the acronym of "coronavirus disease 2019" In the past twenty years, two additional coronavirus epidemics have occurred SARS-CoV provoked a large-scale epidemic beginning in China and involving two dozen countries with approximately 8000 cases and 800 deaths, and the MERS-CoV that began in Saudi Arabia and has approximately 2,500 cases and 800 deaths and still causes as sporadic cases This new virus seems to be very contagious and has quickly spread globally In a meeting on January 30, 2020, per the International Health Regulations (IHR, 2005), the outbreak was declared by the WHO a Public Health Emergency of International Concern (PHEIC) as it had spread to 18 countries with four countries reporting human-to-human transmission An additional landmark occurred on February 26, 2020, as the first case of the disease, not imported from China, was recorded in the United States Initially, the new virus was called 2019-nCoV Subsequently, the task of experts of the International Committee on Taxonomy of Viruses (ICTV) termed it the SARS-CoV-2 virus as it is very similar to the one that caused the SARS outbreak (SARS-CoVs) The CoVs have become the major pathogens of emerging respiratory disease outbreaks They are a large family of single-stranded RNA viruses (+ssRNA) that can be isolated in different animal species For reasons yet to be explained, these viruses can cross species barriers and can cause, in humans, illness ranging from the common cold to more severe diseases such as MERS and SARS Interestingly, these latter viruses have probably originated from bats and then moving into other mammalian hosts — the Himalayan palm civet for SARS-CoV, and the dromedary camel for MERS-CoV — before jumping to humans The dynamics of SARS-Cov-2 are currently unknown, but there is speculation that it also has an animal origin The potential for these viruses to grow to become a pandemic worldwide seems to be a serious public health risk Concerning COVID-19, the WHO raised the threat to the CoV epidemic to the "very high" level, on February 28, 2020 Probably, the effects of the epidemic caused by the new CoV has yet to emerge as the situation is quickly evolving World governments are at work to establish countermeasures to stem possible devastating effects Health organizations coordinate information flows and issues directives and guidelines to best mitigate the impact of the threat At the same time, scientists around the world work tirelessly, and information about the transmission mechanisms, the clinical spectrum of disease, new diagnostics, and prevention and therapeutic strategies are rapidly developing Many uncertainties remain with regard to both the virus-host interac ion and the evolution of the epidemic, with specific reference to the times when the epidemic will reach its peak At the moment, the therapeutic strategies to deal with the infection are only supportive, and prevention aimed at reducing transmission in the community is our best weapon Aggressive isolation measures in China have led to a progressive reduction of cases in the last few days In Italy, in geographic regions of the north of the peninsula, political and health authorities are making incredible efforts to contain a shock wave that is severely testing the health system In the midst of the crisis, the authors have chosen to use the "Statpearls" platform because, within the PubMed scenario, it represents a unique tool that may allow them to make updates in real-time The aim, therefore, is to collect information and scientific evidence and to provide an overview of the topic that will be continuously updated

2,161 citations

Journal ArticleDOI
TL;DR: The current outbreak of the novel coronavirus Covid-19 (coronavirus disease 2019; previously 2019-nCoV), epi-centered in Hubei Province of the People's Republic of China, has spread to many other countries and the incidence in other Asian countries, in Europe and North America remains low so far.
Abstract: The current outbreak of the novel coronavirus Covid-19 (coronavirus disease 2019; previously 2019-nCoV), epi-centered in Hubei Province of the People's Republic of China, has spread to many other countries. On January 30, 2020, the WHO Emergency Committee declared a global health emergency based on growing case notification rates at Chinese and international locations. The case detection rate is changing hourly and daily and can be tracked in almost real time on website provided by Johns Hopkins University [1] and other websites. As of early February 2020, China bears the large burden of morbidity and mortality, whereas the incidence in other Asian countries, in Europe and North America remains low so far.

1,940 citations