scispace - formally typeset
Search or ask a question
Author

Catriona McKenzie

Bio: Catriona McKenzie is an academic researcher from University of Exeter. The author has contributed to research in topics: Population & Medicine. The author has an hindex of 4, co-authored 8 publications receiving 218 citations.
Topics: Population, Medicine, Steppe, Bronze Age, Mesolithic

Papers
More filters
Journal ArticleDOI
29 Jun 2018-Science
TL;DR: Analysis of ancient whole-genome sequences from across Inner Asia and Anatolia shows that the Botai people associated with the earliest horse husbandry derived from a hunter-gatherer population deeply diverged from the Yamnaya, and suggests distinct migrations bringing West Eurasian ancestry into South Asia before and after, but not at the time of, YamNaya culture.
Abstract: The Yamnaya expansions from the western steppe into Europe and Asia during the Early Bronze Age (~3000 BCE) are believed to have brought with them Indo-European languages and possibly horse husbandry. We analyze 74 ancient whole-genome sequences from across Inner Asia and Anatolia and show that the Botai people associated with the earliest horse husbandry derived from a hunter-gatherer population deeply diverged from the Yamnaya. Our results also suggest distinct migrations bringing West Eurasian ancestry into South Asia before and after but not at the time of Yamnaya culture. We find no evidence of steppe ancestry in Bronze Age Anatolia from when Indo-European languages are attested there. Thus, in contrast to Europe, Early Bronze Age Yamnaya-related migrations had limited direct genetic impact in Asia.

273 citations

Posted ContentDOI
27 Sep 2022-bioRxiv
TL;DR: The findings show that although the Stone-Age migrations have been important in shaping contemporary genetic diversity in Eurasia, their dynamics and impact were geographically highly heterogeneous.
Abstract: Several major migrations and population turnover events during the later Stone Age (after c. 11,000 cal. BP) are believed to have shaped the contemporary population genetic diversity in Eurasia. While the genetic impacts of these migrations have been investigated on regional scales, a detailed understanding of their spatiotemporal dynamics both within and between major geographic regions across Northern Eurasia remains largely elusive. Here, we present the largest shotgun-sequenced genomic dataset from the Stone Age to date, representing 317 primarily Mesolithic and Neolithic individuals from across Eurasia, with associated radiocarbon dates, stable isotope data, and pollen records. Using recent advances, we imputed >1,600 ancient genomes to obtain accurate diploid genotypes, enabling previously unachievable fine-grained population structure inferences. We show that 1) Eurasian Mesolitic hunter-gatherers were more genetically diverse than previously known, and deeply divergent between the west and the east; 2) Hitherto genetically undescribed hunter-gatherers from the Middle Don region contributed significant ancestry to the later Yamnaya steppe pastoralists; 3) The genetic impact of the transition from Mesolithic hunter-gatherers to Neolithic farmers was highly distinct, east and west of a “Great Divide” boundary zone extending from the Black Sea to the Baltic, with large-scale shifts in genetic ancestry to the west. This include an almost complete replacement of hunter-gatherers in Denmark, but no substantial shifts during the same period further to the east; 4) Within-group relatedness changes substantially during the Neolithic transition in the west, where clusters of Neolithic farmer-associated individuals show overall reduced relatedness, while genetic relatedness remains high until ~4,000 BP in the east, consistent with a much longer persistence of smaller localised hunter-gatherer groups; 5) A fast-paced second major genetic transformation beginning around 5,000 BP, with Steppe-related ancestry reaching most parts of Europe within a 1,000 years span. Local Neolithic farmers admixed with incoming pastoralists in most parts of Europe, whereas Scandinavia experienced another near-complete population replacement, with similar dramatic turnover-patterns also evident in western Siberia; 6) Extensive regional differences in the ancestry components related to these early events remain visible to this day, even within countries (research conducted using the UK Biobank resource). Neolithic farmer ancestry is highest in southern and eastern England while Steppe-related ancestry is highest in the Celtic populations of Scotland, Wales, and Cornwall. Overall, our findings show that although the Stone-Age migrations have been important in shaping contemporary genetic diversity in Eurasia, their dynamics and impact were geographically highly heterogeneous.

28 citations

Journal ArticleDOI
TL;DR: The paper undertakes the first synthesis study of the 16 known cases of the condition and recommends that in future palaeopathologists should follow the guidance of the World Health Organization and use the term multiple osteochondromas when discussing the disease.

13 citations

Journal ArticleDOI
TL;DR: Dietary evidence derived from both dental palaeopathology and stable isotope analysis indicated that both sexes were consuming similar amounts and types of dietary protein, and elevated δ15N indicated breastfeeding among the youngest in society but, once children had been weaned, the dietary protein was isotopically similar across the different age categories.

9 citations

Journal ArticleDOI
TL;DR: This article examined the relationship between literary and bioarchaeological approaches to slavery, and investigated how the methods and priorities of each discipline might inform each other in unifying the two disciplines.
Abstract: This article examines the relationship between literary and bioarchaeological approaches to slavery, and investigates how the methods and priorities of each discipline might inform each other in un...

7 citations


Cited by
More filters
01 Jan 1980
TL;DR: In this article, the influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition and found that the variability of the relationship between the δ^(15)N values of animals and their diets is greater for different individuals raised on the same diet than for the same species raised on different diets.
Abstract: The influence of diet on the distribution of nitrogen isotopes in animals was investigated by analyzing animals grown in the laboratory on diets of constant nitrogen isotopic composition. The isotopic composition of the nitrogen in an animal reflects the nitrogen isotopic composition of its diet. The δ^(15)N values of the whole bodies of animals are usually more positive than those of their diets. Different individuals of a species raised on the same diet can have significantly different δ^(15)N values. The variability of the relationship between the δ^(15)N values of animals and their diets is greater for different species raised on the same diet than for the same species raised on different diets. Different tissues of mice are also enriched in ^(15)N relative to the diet, with the difference between the δ^(15)N values of a tissue and the diet depending on both the kind of tissue and the diet involved. The δ^(15)N values of collagen and chitin, biochemical components that are often preserved in fossil animal remains, are also related to the δ^(15)N value of the diet. The dependence of the δ^(15)N values of whole animals and their tissues and biochemical components on the δ^(15)N value of diet indicates that the isotopic composition of animal nitrogen can be used to obtain information about an animal's diet if its potential food sources had different δ^(15)N values. The nitrogen isotopic method of dietary analysis probably can be used to estimate the relative use of legumes vs non-legumes or of aquatic vs terrestrial organisms as food sources for extant and fossil animals. However, the method probably will not be applicable in those modern ecosystems in which the use of chemical fertilizers has influenced the distribution of nitrogen isotopes in food sources. The isotopic method of dietary analysis was used to reconstruct changes in the diet of the human population that occupied the Tehuacan Valley of Mexico over a 7000 yr span. Variations in the δ^(15)C and δ^(15)N values of bone collagen suggest that C_4 and/or CAM plants (presumably mostly corn) and legumes (presumably mostly beans) were introduced into the diet much earlier than suggested by conventional archaeological analysis.

5,548 citations

Journal ArticleDOI
01 May 1969-Nature
TL;DR: Animal Bones in ArchaeologyBook of Notes and Drawings for Beginners.
Abstract: Animal Bones in Archaeology Book of Notes and Drawings for Beginners. By Michael L. Ryder. (Mammal Society Handbooks.) Pp. xxiv + 65. (Blackwell (Scientific): Oxford and Edinburgh. Published for the Mammal Society, 1969.) 17s.

732 citations

Iosif Lazaridis1, Iosif Lazaridis2, Nick Patterson2, Alissa Mittnik3, Gabriel Renaud4, Swapan Mallick1, Swapan Mallick2, Karola Kirsanow5, Peter H. Sudmant6, Joshua G. Schraiber7, Joshua G. Schraiber6, Sergi Castellano4, Mark Lipson8, Bonnie Berger8, Bonnie Berger2, Christos Economou9, Ruth Bollongino5, Qiaomei Fu4, Kirsten I. Bos3, Susanne Nordenfelt1, Susanne Nordenfelt2, Heng Li2, Heng Li1, Cesare de Filippo4, Kay Prüfer4, Susanna Sawyer4, Cosimo Posth3, Wolfgang Haak10, Fredrik Hallgren11, Elin Fornander11, Nadin Rohland1, Nadin Rohland2, Dominique Delsate12, Michael Francken3, Jean-Michel Guinet12, Joachim Wahl, George Ayodo, Hamza A. Babiker13, Hamza A. Babiker14, Graciela Bailliet, Elena Balanovska, Oleg Balanovsky, Ramiro Barrantes15, Gabriel Bedoya16, Haim Ben-Ami17, Judit Bene18, Fouad Berrada19, Claudio M. Bravi, Francesca Brisighelli20, George B.J. Busby21, Francesco Calì, Mikhail Churnosov22, David E. C. Cole23, Daniel Corach24, Larissa Damba, George van Driem25, Stanislav Dryomov26, Jean-Michel Dugoujon27, Sardana A. Fedorova28, Irene Gallego Romero29, Marina Gubina, Michael F. Hammer30, Brenna M. Henn31, Tor Hervig32, Ugur Hodoglugil33, Aashish R. Jha29, Sena Karachanak-Yankova34, Rita Khusainova35, Elza Khusnutdinova35, Rick A. Kittles30, Toomas Kivisild36, William Klitz7, Vaidutis Kučinskas37, Alena Kushniarevich38, Leila Laredj39, Sergey Litvinov38, Theologos Loukidis40, Theologos Loukidis41, Robert W. Mahley42, Béla Melegh18, Ene Metspalu43, Julio Molina, Joanna L. Mountain, Klemetti Näkkäläjärvi44, Desislava Nesheva34, Thomas B. Nyambo45, Ludmila P. Osipova, Jüri Parik43, Fedor Platonov28, Olga L. Posukh, Valentino Romano46, Francisco Rothhammer47, Francisco Rothhammer48, Igor Rudan14, Ruslan Ruizbakiev49, Hovhannes Sahakyan38, Hovhannes Sahakyan50, Antti Sajantila51, Antonio Salas52, Elena B. Starikovskaya26, Ayele Tarekegn, Draga Toncheva34, Shahlo Turdikulova49, Ingrida Uktveryte37, Olga Utevska53, René Vasquez54, Mercedes Villena54, Mikhail Voevoda55, Cheryl A. Winkler56, Levon Yepiskoposyan50, Pierre Zalloua1, Pierre Zalloua57, Tatijana Zemunik58, Alan Cooper10, Cristian Capelli21, Mark G. Thomas41, Andres Ruiz-Linares41, Sarah A. Tishkoff59, Lalji Singh60, Kumarasamy Thangaraj61, Richard Villems38, Richard Villems43, Richard Villems62, David Comas63, Rem I. Sukernik26, Mait Metspalu38, Matthias Meyer4, Evan E. Eichler6, Joachim Burger5, Montgomery Slatkin7, Svante Pääbo4, Janet Kelso4, David Reich64, David Reich1, David Reich2, Johannes Krause3, Johannes Krause4 
Harvard University1, Broad Institute2, University of Tübingen3, Max Planck Society4, University of Mainz5, University of Washington6, University of California, Berkeley7, Massachusetts Institute of Technology8, Stockholm University9, University of Adelaide10, The Heritage Foundation11, National Museum of Natural History12, Sultan Qaboos University13, University of Edinburgh14, University of Costa Rica15, University of Antioquia16, Rambam Health Care Campus17, University of Pécs18, Al Akhawayn University19, Catholic University of the Sacred Heart20, University of Oxford21, Belgorod State University22, University of Toronto23, University of Buenos Aires24, University of Bern25, Russian Academy of Sciences26, Paul Sabatier University27, North-Eastern Federal University28, University of Chicago29, University of Arizona30, Stony Brook University31, University of Bergen32, Illumina33, Sofia Medical University34, Bashkir State University35, University of Cambridge36, Vilnius University37, Estonian Biocentre38, University of Strasbourg39, Amgen40, University College London41, Gladstone Institutes42, University of Tartu43, University of Oulu44, Muhimbili University of Health and Allied Sciences45, University of Palermo46, University of Chile47, University of Tarapacá48, Academy of Sciences of Uzbekistan49, Armenian National Academy of Sciences50, University of North Texas51, University of Santiago de Compostela52, University of Kharkiv53, Higher University of San Andrés54, Novosibirsk State University55, Leidos56, Lebanese American University57, University of Split58, University of Pennsylvania59, Banaras Hindu University60, Centre for Cellular and Molecular Biology61, Estonian Academy of Sciences62, Pompeu Fabra University63, Howard Hughes Medical Institute64
01 Sep 2014
TL;DR: The authors showed that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, ancient north Eurasians related to Upper Palaeolithic Siberians, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunters-gatherer related ancestry.
Abstract: We sequenced the genomes of a ∼7,000-year-old farmer from Germany and eight ∼8,000-year-old hunter-gatherers from Luxembourg and Sweden. We analysed these and other ancient genomes with 2,345 contemporary humans to show that most present-day Europeans derive from at least three highly differentiated populations: west European hunter-gatherers, who contributed ancestry to all Europeans but not to Near Easterners; ancient north Eurasians related to Upper Palaeolithic Siberians, who contributed to both Europeans and Near Easterners; and early European farmers, who were mainly of Near Eastern origin but also harboured west European hunter-gatherer related ancestry. We model these populations' deep relationships and show that early European farmers had ∼44% ancestry from a 'basal Eurasian' population that split before the diversification of other non-African lineages.

442 citations

Journal ArticleDOI
Vagheesh M. Narasimhan1, Nick Patterson2, Nick Patterson3, Priya Moorjani4, Nadin Rohland2, Nadin Rohland1, Rebecca Bernardos1, Swapan Mallick5, Swapan Mallick2, Swapan Mallick1, Iosif Lazaridis1, Nathan Nakatsuka6, Nathan Nakatsuka1, Iñigo Olalde1, Mark Lipson1, Alexander M. Kim1, Luca M. Olivieri, Alfredo Coppa7, Massimo Vidale8, James Mallory9, Vyacheslav Moiseyev10, Egor Kitov11, Egor Kitov10, Janet Monge12, Nicole Adamski5, Nicole Adamski1, Neel Alex4, Nasreen Broomandkhoshbacht1, Nasreen Broomandkhoshbacht5, Francesca Candilio13, Kimberly Callan5, Kimberly Callan1, Olivia Cheronet14, Olivia Cheronet13, Brendan J. Culleton15, Matthew Ferry1, Matthew Ferry5, Daniel Fernandes, Suzanne Freilich14, Beatriz Gamarra13, Daniel Gaudio13, Mateja Hajdinjak16, Eadaoin Harney1, Eadaoin Harney5, Thomas K. Harper15, Denise Keating13, Ann Marie Lawson5, Ann Marie Lawson1, Matthew Mah2, Matthew Mah5, Matthew Mah1, Kirsten Mandl14, Megan Michel1, Megan Michel5, Mario Novak13, Jonas Oppenheimer5, Jonas Oppenheimer1, Niraj Rai17, Niraj Rai18, Kendra Sirak1, Kendra Sirak13, Kendra Sirak19, Viviane Slon16, Kristin Stewardson5, Kristin Stewardson1, Fatma Zalzala1, Fatma Zalzala5, Zhao Zhang1, Gaziz Akhatov, Anatoly N. Bagashev, Alessandra Bagnera, Bauryzhan Baitanayev, Julio Bendezu-Sarmiento20, Arman A. Bissembaev, Gian Luca Bonora, T Chargynov21, T. A. Chikisheva10, Petr K. Dashkovskiy22, Anatoly P. Derevianko10, Miroslav Dobeš23, Katerina Douka24, Katerina Douka16, Nadezhda Dubova10, Meiram N. Duisengali, Dmitry Enshin, Andrey Epimakhov25, Alexey Fribus26, Dorian Q. Fuller27, Dorian Q. Fuller28, Alexander Goryachev, Andrey Gromov10, S. P. Grushin22, Bryan Hanks29, Margaret A. Judd29, Erlan Kazizov, Aleksander Khokhlov30, Aleksander P. Krygin, Elena Kupriyanova31, Pavel Kuznetsov30, Donata Luiselli32, Farhod Maksudov33, Aslan M. Mamedov, Talgat B. Mamirov, Christopher Meiklejohn34, Deborah C. Merrett35, Roberto Micheli, Oleg Mochalov30, Samariddin Mustafokulov33, Ayushi Nayak16, Davide Pettener32, Richard Potts36, Dmitry Razhev, Marina Petrovna Rykun37, Stefania Sarno32, Tatyana M. Savenkova, Kulyan Sikhymbaeva, Sergey Mikhailovich Slepchenko, Oroz A. Soltobaev21, Nadezhda Stepanova10, Svetlana V. Svyatko10, Svetlana V. Svyatko9, Kubatbek Tabaldiev, Maria Teschler-Nicola14, Maria Teschler-Nicola38, Alexey A. Tishkin22, Vitaly V. Tkachev, Sergey Vasilyev10, Petr Velemínský39, Dmitriy Voyakin, Antonina Yermolayeva, Muhammad Zahir40, Muhammad Zahir16, Valery S. Zubkov, A. V. Zubova10, Vasant Shinde41, Carles Lalueza-Fox42, Matthias Meyer16, David W. Anthony43, Nicole Boivin16, Kumarasamy Thangaraj17, Douglas J. Kennett15, Douglas J. Kennett44, Michael D. Frachetti45, Ron Pinhasi13, Ron Pinhasi14, David Reich 
06 Sep 2019-Science
TL;DR: It is shown that Steppe ancestry then integrated further south in the first half of the second millennium BCE, contributing up to 30% of the ancestry of modern groups in South Asia, supporting the idea that the archaeologically documented dispersal of domesticates was accompanied by the spread of people from multiple centers of domestication.
Abstract: By sequencing 523 ancient humans, we show that the primary source of ancestry in modern South Asians is a prehistoric genetic gradient between people related to early hunter-gatherers of Iran and Southeast Asia. After the Indus Valley Civilization's decline, its people mixed with individuals in the southeast to form one of the two main ancestral populations of South Asia, whose direct descendants live in southern India. Simultaneously, they mixed with descendants of Steppe pastoralists who, starting around 4000 years ago, spread via Central Asia to form the other main ancestral population. The Steppe ancestry in South Asia has the same profile as that in Bronze Age Eastern Europe, tracking a movement of people that affected both regions and that likely spread the distinctive features shared between Indo-Iranian and Balto-Slavic languages.

354 citations