scispace - formally typeset
Search or ask a question
Author

Cécile Alanio

Bio: Cécile Alanio is an academic researcher from University of Pennsylvania. The author has contributed to research in topics: Immune system & Cytotoxic T cell. The author has an hindex of 17, co-authored 33 publications receiving 2175 citations. Previous affiliations of Cécile Alanio include French Institute of Health and Medical Research & Pasteur Institute.

Papers
More filters
Journal ArticleDOI
04 Sep 2020-Science
TL;DR: High-dimensional flow cytometry of hospitalized COVID-19 patients found three prominent and distinct immunotypes that are related to disease severity and clinical parameters, and a compendium of immune cell information and roadmaps for potential therapeutic interventions is provided.
Abstract: Coronavirus disease 2019 (COVID-19) is currently a global pandemic, but human immune responses to the virus remain poorly understood. We used high-dimensional cytometry to analyze 125 COVID-19 patients and compare them with recovered and healthy individuals. Integrated analysis of ~200 immune and ~50 clinical features revealed activation of T cell and B cell subsets in a proportion of patients. A subgroup of patients had T cell activation characteristic of acute viral infection and plasmablast responses reaching >30% of circulating B cells. However, another subgroup had lymphocyte activation comparable with that in uninfected individuals. Stable versus dynamic immunological signatures were identified and linked to trajectories of disease severity change. Our analyses identified three immunotypes associated with poor clinical trajectories versus improving health. These immunotypes may have implications for the design of therapeutics and vaccines for COVID-19.

1,224 citations

Journal ArticleDOI
TL;DR: These findings prompt a need to revisit the significance of PD-1-infiltrating T cells in cancer, where it is suggested thatPD-1 detection may reflect a previous immune response against tumors that might be reactivated by PD- 1/PD-L1 blockade.
Abstract: Head and neck cancers positive for human papillomavirus (HPV) have a more favorable clinical outcome than HPV-negative cancers, but it is unknown why this is the case. We hypothesized that prognosis was affected by intrinsic features of HPV-infected tumor cells or differences in host immune response. In this study, we focused on a comparison of regulatory Foxp3(+) T cells and programmed death-1 (PD-1)(+) T cells in the microenvironment of tumors that were positive or negative for HPV, in two groups that were matched for various clinical and biologic parameters. HPV-positive head and neck cancers were more heavily infiltrated by regulatory T cells and PD-1(+) T cells and the levels of PD-1(+) cells were positively correlated with a favorable clinical outcome. In explaining this paradoxical result, we showed that these PD-1(+) T cells expressed activation markers and were functional after blockade of the PD-1-PD-L1 axis in vitro. Approximately 50% of PD-1(+) tumor-infiltrating T cells lacked Tim-3 expression and may indeed represent activated T cells. In mice, administration of a cancer vaccine increased PD-1 on T cells with concomitant tumor regression. In this setting, PD-1 blockade synergized with vaccine in eliciting antitumor efficacy. Our findings prompt a need to revisit the significance of PD-1-infiltrating T cells in cancer, where we suggest that PD-1 detection may reflect a previous immune response against tumors that might be reactivated by PD-1/PD-L1 blockade.

550 citations

Journal ArticleDOI
01 Apr 2021-Cell
TL;DR: In this paper, the authors quantified levels of SARS-CoV-2-reactive antibodies and hCoVreactive antibody in serum samples collected from 431 individuals before the COVID-19 pandemic, and then quantified pre-pandemic antibody levels in serum from a separate cohort of 251 individuals who became PCR-confirmed infected with SARS CoV 2.

283 citations

Journal ArticleDOI
TL;DR: In this paper, the authors showed that CD8 T cell responses to vaccination might provide protection in patients with hematologic cancer even in the setting of limited humoral responses, including those treated with anti-CD20 therapy.
Abstract: Patients with cancer have high mortality from coronavirus disease 2019 (COVID-19), and the immune parameters that dictate clinical outcomes remain unknown. In a cohort of 100 patients with cancer who were hospitalized for COVID-19, patients with hematologic cancer had higher mortality relative to patients with solid cancer. In two additional cohorts, flow cytometric and serologic analyses demonstrated that patients with solid cancer and patients without cancer had a similar immune phenotype during acute COVID-19, whereas patients with hematologic cancer had impairment of B cells and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibody responses. Despite the impaired humoral immunity and high mortality in patients with hematologic cancer who also have COVID-19, those with a greater number of CD8 T cells had improved survival, including those treated with anti-CD20 therapy. Furthermore, 77% of patients with hematologic cancer had detectable SARS-CoV-2-specific T cell responses. Thus, CD8 T cells might influence recovery from COVID-19 when humoral immunity is deficient. These observations suggest that CD8 T cell responses to vaccination might provide protection in patients with hematologic cancer even in the setting of limited humoral responses.

277 citations

Journal ArticleDOI
TL;DR: In this article , the authors studied long-lasting CD19-redirected chimeric antigen receptor (CAR) T cells in two patients with chronic lymphocytic leukaemia who achieved a complete remission in 2010.
Abstract: The adoptive transfer of T lymphocytes reprogrammed to target tumour cells has demonstrated potential for treatment of various cancers1-7. However, little is known about the long-term potential and clonal stability of the infused cells. Here we studied long-lasting CD19-redirected chimeric antigen receptor (CAR) T cells in two patients with chronic lymphocytic leukaemia1-4 who achieved a complete remission in 2010. CAR T cells remained detectable more than ten years after infusion, with sustained remission in both patients. Notably, a highly activated CD4+ population emerged in both patients, dominating the CAR T cell population at the later time points. This transition was reflected in the stabilization of the clonal make-up of CAR T cells with a repertoire dominated by a small number of clones. Single-cell profiling demonstrated that these long-persisting CD4+ CAR T cells exhibited cytotoxic characteristics along with ongoing functional activation and proliferation. In addition, longitudinal profiling revealed a population of gamma delta CAR T cells that prominently expanded in one patient concomitant with CD8+ CAR T cells during the initial response phase. Our identification and characterization of these unexpected CAR T cell populations provide novel insight into the CAR T cell characteristics associated with anti-cancer response and long-term remission in leukaemia.

247 citations


Cited by
More filters
01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
TL;DR: Among patients with platinum-refractory, recurrent squamous-cell carcinoma of the head and neck, treatment with nivolumab resulted in longer overall survival than treatment with standard, single-agent therapy.
Abstract: BackgroundPatients with recurrent or metastatic squamous-cell carcinoma of the head and neck after platinum chemotherapy have a very poor prognosis and limited therapeutic options. Nivolumab, an anti–programmed death 1 (PD-1) monoclonal antibody, was assessed as treatment for this condition. MethodsIn this randomized, open-label, phase 3 trial, we assigned, in a 2:1 ratio, 361 patients with recurrent squamous-cell carcinoma of the head and neck whose disease had progressed within 6 months after platinum-based chemotherapy to receive nivolumab (at a dose of 3 mg per kilogram of body weight) every 2 weeks or standard, single-agent systemic therapy (methotrexate, docetaxel, or cetuximab). The primary end point was overall survival. Additional end points included progression-free survival, rate of objective response, safety, and patient-reported quality of life. ResultsThe median overall survival was 7.5 months (95% confidence interval [CI], 5.5 to 9.1) in the nivolumab group versus 5.1 months (95% CI, 4.0 to...

3,246 citations

Journal ArticleDOI
27 Jul 2020-Nature
TL;DR: A longitudinal analysis of immune responses in patients with moderate or severe COVID-19 identifies a maladapted immune response profile linked to severe disease, as well as early immune signatures that correlate with divergent disease trajectories.
Abstract: Recent studies have provided insights into the pathogenesis of coronavirus disease 2019 (COVID-19)1-4. However, the longitudinal immunological correlates of disease outcome remain unclear. Here we serially analysed immune responses in 113 patients with moderate or severe COVID-19. Immune profiling revealed an overall increase in innate cell lineages, with a concomitant reduction in T cell number. An early elevation in cytokine levels was associated with worse disease outcomes. Following an early increase in cytokines, patients with moderate COVID-19 displayed a progressive reduction in type 1 (antiviral) and type 3 (antifungal) responses. By contrast, patients with severe COVID-19 maintained these elevated responses throughout the course of the disease. Moreover, severe COVID-19 was accompanied by an increase in multiple type 2 (anti-helminths) effectors, including interleukin-5 (IL-5), IL-13, immunoglobulin E and eosinophils. Unsupervised clustering analysis identified four immune signatures, representing growth factors (A), type-2/3 cytokines (B), mixed type-1/2/3 cytokines (C), and chemokines (D) that correlated with three distinct disease trajectories. The immune profiles of patients who recovered from moderate COVID-19 were enriched in tissue reparative growth factor signature A, whereas the profiles of those with who developed severe disease had elevated levels of all four signatures. Thus, we have identified a maladapted immune response profile associated with severe COVID-19 and poor clinical outcome, as well as early immune signatures that correlate with divergent disease trajectories.

1,572 citations

Journal ArticleDOI
TL;DR: A long-lived human memory T cell population that has an enhanced capacity for self-renewal and a multipotent ability to derive central memory, effector memory and effector T cells is described.
Abstract: Immunological memory is thought to depend on a stem cell–like, self-renewing population of lymphocytes capable of differentiating into effector cells in response to antigen re-exposure. Here we describe a long-lived human memory T cell population that has an enhanced capacity for self-renewal and a multipotent ability to derive central memory, effector memory and effector T cells. These cells, specific to multiple viral and self-tumor antigens, were found within a CD45RO−, CCR7+, CD45RA+, CD62L+, CD27+, CD28+ and IL-7Rα+ T cell compartment characteristic of naive T cells. However, they expressed large amounts of CD95, IL-2Rβ, CXCR3, and LFA-1, and showed numerous functional attributes distinctive of memory cells. Compared with known memory populations, these lymphocytes had increased proliferative capacity and more efficiently reconstituted immunodeficient hosts, and they mediated superior antitumor responses in a humanized mouse model. The identification of a human stem cell–like memory T cell population is of direct relevance to the design of vaccines and T cell therapies.

1,526 citations

Journal ArticleDOI
TL;DR: From the Department of Medicine, Division of Translational Medicine and Human Genetics, Center for Cytokine Storm Treatment and Laboratory, and the Center for Cellular Immunotherapies and the Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia.
Abstract: From the Department of Medicine, Division of Translational Medicine and Human Genetics, Center for Cytokine Storm Treatment and Laboratory (D.C.F.), and the Center for Cellular Immunotherapies and the Parker Institute for Cancer Immunotherapy (C.H.J.), Perelman School of Medicine, University of Pennsylvania, Philadelphia. Address reprint requests to Dr. Fajgenbaum at davidfa@ pennmedicine . upenn . edu or to Dr. June at cjune@ upenn . edu.

1,517 citations