scispace - formally typeset
Search or ask a question
Author

Cécile DeWitt-Morette

Other affiliations: Bielefeld University
Bio: Cécile DeWitt-Morette is an academic researcher from University of Texas at Austin. The author has contributed to research in topics: Path integral formulation & Functional integration. The author has an hindex of 23, co-authored 68 publications receiving 9132 citations. Previous affiliations of Cécile DeWitt-Morette include Bielefeld University.


Papers
More filters
Journal ArticleDOI
TL;DR: These six volumes as mentioned in this paper compile the mathematical knowledge required by researchers in mechanics, physics, engineering, chemistry and other branches of application of mathematics for the theoretical and numerical resolution of physical models on computers.
Abstract: These six volumes - the result of a ten year collaboration between the authors, two of France's leading scientists and both distinguished international figures - compile the mathematical knowledge required by researchers in mechanics, physics, engineering, chemistry and other branches of application of mathematics for the theoretical and numerical resolution of physical models on computers. Since the publication in 1924 of the Methoden der mathematischen Physik by Courant and Hilbert, there has been no other comprehensive and up-to-date publication presenting the mathematical tools needed in applications of mathematics in directly implementable form. The advent of large computers has in the meantime revolutionised methods of computation and made this gap in the literature intolerable: the objective of the present work is to fill just this gap. Many phenomena in physical mathematics may be modeled by a system of partial differential equations in distributed systems: a model here means a set of equations, which together with given boundary data and, if the phenomenon is evolving in time, initial data, defines the system. The advent of high-speed computers has made it possible for the first time to caluclate values from models accurately and rapidly. Researchers and engineers thus have a crucial means of using numerical results to modify and adapt arguments and experiments along the way. Every fact of technical and industrial activity has been affected by these developments. Modeling by distributed systems now also supports work in many areas of physics (plasmas, new materials, astrophysics, geophysics), chemistry and mechanics and is finding increasing use in the life sciences. Volumes 5 and 6 cover problems of Transport and Evolution.

2,137 citations

Book
27 Dec 2005
TL;DR: In this paper, the authors present a list of applications of the path integral formula in statistical mechanics, including the application of the Path Integral formula to Statistical Mechanics, asymptotic analysis, and the phase space path integral.
Abstract: Partial table of contents: Probabilities and Probability Amplitudes for Paths. Correspondence Limit for the Path Integral (Heuristic). Vector Potentials and Another Proof of the Path Integral Formula. Doing the Integral: Free Particle and Quadratic Lagrangians. Brownian Motion and the Wiener Integral Kac's Proof. Perturbation Theory and Feynman Diagrams. SELECTED APPLICATIONS OF THE PATH INTEGRAL. Asymptotic Analysis. The Calculus of Variations. WKB Near Caustics. The Phase of the Semiclassical Amplitude. Scattering Theory. Geometrical Optics. The Polaron. Spin and Related Matters. Quantum Mechanics on Curved Spaces. Relativistic Propagators and Black Holes. Applications to Statistical Mechanics. Critical Droplets. Alias Instantons, and Metastability. Phase Space Path Integral. Omissions, Miscellany, and Prejudices. Indexes.

2,079 citations

Book
01 Jan 1983
TL;DR: In this paper, the authors provide core material in nonlinear analysis for mathematicians, physicists, engineers, and mathematical biologists, including manifolds, dynamical systems, tensors, and differential forms.
Abstract: The purpose of this book is to provide core material in nonlinear analysis for mathematicians, physicists, engineers, and mathematical biologists. The main goal is to provide a working knowledge of manifolds, dynamical systems, tensors, and differential forms. Some applications to Hamiltonian mechanics, fluid mechanics, electromagnetism, plasma dynamics and control theory are given using both invariant and index notation. The prerequisites required are solid undergraduate courses in linear algebra and advanced calculus.

1,780 citations

Book
01 Jan 1977
TL;DR: In this paper, a review of fundamental notions of analysis is presented, including differential calculus on Banach spaces, integration on manifolds, and connection on a principle fibre bundle. But the authors do not consider the infinite dimensional case of manifolds.
Abstract: Preface. Chapters: I. Review of fundamental notions of analysis. II. Differential calculus on Banach spaces. III. Differentiable manifolds, finite dimensional case. IV. Integration on manifolds. V. Riemannian manifolds. Kahlerian manifolds. V bis. Connections on a principle fibre bundle. VI. Distributions. VII. Differentiable manifolds, infinite dimensional case. References. Symbols. Index.

692 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, it was shown that the Aharonov-Bohm effect can be interpreted as a geometrical phase factor and a general formula for γ(C) was derived in terms of the spectrum and eigen states of the Hamiltonian over a surface spanning C.
Abstract: A quantal system in an eigenstate, slowly transported round a circuit C by varying parameters R in its Hamiltonian Ĥ(R), will acquire a geometrical phase factor exp{iγ(C)} in addition to the familiar dynamical phase factor. An explicit general formula for γ(C) is derived in terms of the spectrum and eigenstates of Ĥ(R) over a surface spanning C. If C lies near a degeneracy of Ĥ, γ(C) takes a simple form which includes as a special case the sign change of eigenfunctions of real symmetric matrices round a degeneracy. As an illustration γ(C) is calculated for spinning particles in slowly-changing magnetic fields; although the sign reversal of spinors on rotation is a special case, the effect is predicted to occur for bosons as well as fermions, and a method for observing it is proposed. It is shown that the Aharonov-Bohm effect can be interpreted as a geometrical phase factor.

7,425 citations

Journal ArticleDOI
TL;DR: In this article, a review of recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases is presented, focusing on effects beyond standard weakcoupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation.
Abstract: This paper reviews recent experimental and theoretical progress concerning many-body phenomena in dilute, ultracold gases. It focuses on effects beyond standard weak-coupling descriptions, such as the Mott-Hubbard transition in optical lattices, strongly interacting gases in one and two dimensions, or lowest-Landau-level physics in quasi-two-dimensional gases in fast rotation. Strong correlations in fermionic gases are discussed in optical lattices or near-Feshbach resonances in the BCS-BEC crossover.

6,601 citations

Journal ArticleDOI
TL;DR: Extended Theories of Gravity as discussed by the authors can be considered as a new paradigm to cure shortcomings of General Relativity at infrared and ultraviolet scales, which is an approach that, by preserving the undoubtedly positive results of Einstein's theory, is aimed to address conceptual and experimental problems recently emerged in astrophysics, cosmology and High Energy Physics.

2,776 citations

Book
23 Dec 2007
TL;DR: Optimization Algorithms on Matrix Manifolds offers techniques with broad applications in linear algebra, signal processing, data mining, computer vision, and statistical analysis and will be of interest to applied mathematicians, engineers, and computer scientists.
Abstract: Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on both the numerical formulation of the algorithm and its differential geometric abstraction--illustrating how good algorithms draw equally from the insights of differential geometry, optimization, and numerical analysis. Two more theoretical chapters provide readers with the background in differential geometry necessary to algorithmic development. In the other chapters, several well-known optimization methods such as steepest descent and conjugate gradients are generalized to abstract manifolds. The book provides a generic development of each of these methods, building upon the material of the geometric chapters. It then guides readers through the calculations that turn these geometrically formulated methods into concrete numerical algorithms. The state-of-the-art algorithms given as examples are competitive with the best existing algorithms for a selection of eigenspace problems in numerical linear algebra. Optimization Algorithms on Matrix Manifolds offers techniques with broad applications in linear algebra, signal processing, data mining, computer vision, and statistical analysis. It can serve as a graduate-level textbook and will be of interest to applied mathematicians, engineers, and computer scientists.

2,586 citations

Book
20 May 2005
TL;DR: In this paper, the mathematical underpinnings of robot motion are discussed and a text that makes the low-level details of implementation to high-level algorithmic concepts is presented.
Abstract: A text that makes the mathematical underpinnings of robot motion accessible and relates low-level details of implementation to high-level algorithmic concepts. Robot motion planning has become a major focus of robotics. Research findings can be applied not only to robotics but to planning routes on circuit boards, directing digital actors in computer graphics, robot-assisted surgery and medicine, and in novel areas such as drug design and protein folding. This text reflects the great advances that have taken place in the last ten years, including sensor-based planning, probabalistic planning, localization and mapping, and motion planning for dynamic and nonholonomic systems. Its presentation makes the mathematical underpinnings of robot motion accessible to students of computer science and engineering, rleating low-level implementation details to high-level algorithmic concepts.

1,811 citations