scispace - formally typeset
Search or ask a question
Author

Cédric Mariac

Bio: Cédric Mariac is an academic researcher from Institut de recherche pour le développement. The author has contributed to research in topics: Genetic diversity & Population. The author has an hindex of 21, co-authored 55 publications receiving 1578 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This work resequenced and analyzed 994 pearl millet lines, enabling insights into population structure, genetic diversity and domestication, and establishes marker trait associations for genomic selection, to define heterotic pools, and to predict hybrid performance.
Abstract: Pearl millet [Cenchrus americanus (L.) Morrone] is a staple food for more than 90 million farmers in arid and semi-arid regions of sub-Saharan Africa, India and South Asia. We report the ~1.79 Gb draft whole genome sequence of reference genotype Tift 23D2B1-P1-P5, which contains an estimated 38,579 genes. We highlight the substantial enrichment for wax biosynthesis genes, which may contribute to heat and drought tolerance in this crop. We resequenced and analyzed 994 pearl millet lines, enabling insights into population structure, genetic diversity and domestication. We use these resequencing data to establish marker trait associations for genomic selection, to define heterotic pools, and to predict hybrid performance. We believe that these resources should empower researchers and breeders to improve this important staple crop.

285 citations

Journal ArticleDOI
TL;DR: A significantly lower number of alleles and lower gene diversity in cultivated pearl millet accessions than in wild accessions is shown, which contrasts with a previous study using iso-enzyme markers showing similar genetic diversity between cultivated and wild pearl Millet populations.
Abstract: Genetic diversity of crop species in sub-Sahelian Africa is still poorly documented. Among such crops, pearl millet is one of the most important staple species. In Niger, pearl millet covers more than 65% of the total cultivated area. Analyzing pearl millet genetic diversity, its origin and its dynamics is important for in situ and ex situ germplasm conservation and to increase knowledge useful for breeding programs. We developed new genetic markers and a high-throughput technique for the genetic analysis of pearl millet. Using 25 microsatellite markers, we analyzed genetic diversity in 46 wild and 421 cultivated accessions of pearl millet in Niger. We showed a significantly lower number of alleles and lower gene diversity in cultivated pearl millet accessions than in wild accessions. This result contrasts with a previous study using iso-enzyme markers showing similar genetic diversity between cultivated and wild pearl millet populations. We found a strong differentiation between the cultivated and wild groups in Niger. Analyses of introgressions between cultivated and wild accessions showed modest but statistically supported evidence of introgressions. Wild accessions in the central region of Niger showed introgressions of cultivated alleles. Accessions of cultivated pearl millet showed introgressions of wild alleles in the western, central, and eastern parts of Niger.

139 citations

Journal ArticleDOI
TL;DR: It is found that a monophyletic origin of cultivated pearl millet in West Africa is the most likely scenario supported by the data set and the phylogenetic relationship among accessions not showing introgression is analyzed.
Abstract: During the last 12,000 years, different cultures around the world have domesticated cereal crops. Several studies investigated the evolutionary history and domestication of cereals such as wheat in the Middle East, rice in Asia or maize in America. The domestication process in Africa has led to the emergence of important cereal crops like pearl millet in Sahelian Africa. In this study, we used 27 microsatellite loci to analyze 84 wild accessions and 355 cultivated accessions originating from the whole pearl millet distribution area in Africa and Asia. We found significantly higher diversity in the wild pearl millet group. The cultivated pearl millet sample possessed 81% of the alleles and 83% of the genetic diversity of the wild pearl millet sample. Using Bayesian approaches, we identified intermediate genotypes between the cultivated and wild groups. We then analyzed the phylogenetic relationship among accessions not showing introgression and found that a monophyletic origin of cultivated pearl millet in West Africa is the most likely scenario supported by our data set.

130 citations

Journal ArticleDOI
TL;DR: An easy and cost‐effective protocol for in‐solution enrichment hybridization capture of complete chloroplast genomes applicable at deep‐multiplexed levels and will allow unprecedented resolution for closely related species in phylogeography studies using plastomes.
Abstract: Biodiversity, phylogeography and population genetic studies will be revolutionized by access to large data sets thanks to next-generation sequencing methods. In this study, we develop an easy and cost-effective protocol for in-solution enrichment hybridization capture of complete chloroplast genomes applicable at deep-multiplexed levels. The protocol uses cheap in-house species-specific probes developed via long-range PCR of the entire chloroplast. Barcoded libraries are constructed, and in-solution enrichment of the chloroplasts is carried out using the probes. This protocol was tested and validated on six economically important West African crop species, namely African rice, pearl millet, three African yam species and fonio. For pearl millet, we also demonstrate the effectiveness of this protocol to retrieve 95% of the sequence of the whole chloroplast on 95 multiplexed individuals in a single MiSeq run at a success rate of 95%. This new protocol allows whole chloroplast genomes to be retrieved at a modest cost and will allow unprecedented resolution for closely related species in phylogeography studies using plastomes.

110 citations

Journal ArticleDOI
01 Jul 2009-Genetics
TL;DR: An association framework to identify genetic variations associated with the phenotype in pearl millet was developed and a significant association between genetic variation in this gene and these characters was confirmed.
Abstract: The identification of genes selected during and after plant domestication is an important research topic to enhance knowledge on adaptative evolution. Adaptation to different climates was a key factor in the spread of domesticated crops. We conducted a study to identify genes responsible for these adaptations in pearl millet and developed an association framework to identify genetic variations associated with the phenotype in this species. A set of 90 inbred lines genotyped using microsatellite loci and AFLP markers was used. The population structure was assessed using two different Bayesian approaches that allow inbreeding or not. Association studies were performed using a linear mixed model considering both the population structure and familial relationships between inbred lines. We assessed the ability of the method to limit the number of false positive associations on the basis of the two different Bayesian methods, the number of populations considered and different morphological traits while also assessing the power of the methodology to detect given additive effects. Finally, we applied this methodology to a set of eight pearl millet genes homologous to cereal flowering pathway genes. We found significant associations between several polymorphisms of the pearl millet PHYC gene and flowering time, spike length, and stem diameter in the inbred line panel. To validate this association, we performed a second association analysis in a different set of pearl millet individuals from Niger. We confirmed a significant association between genetic variation in this gene and these characters.

94 citations


Cited by
More filters
Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

Journal ArticleDOI

3,734 citations

Journal ArticleDOI
TL;DR: The impact of chloroplast genome sequences on understanding the origins of economically important cultivated species and changes that have taken place during domestication are discussed.
Abstract: Chloroplasts play a crucial role in sustaining life on earth. The availability of over 800 sequenced chloroplast genomes from a variety of land plants has enhanced our understanding of chloroplast biology, intracellular gene transfer, conservation, diversity, and the genetic basis by which chloroplast transgenes can be engineered to enhance plant agronomic traits or to produce high-value agricultural or biomedical products. In this review, we discuss the impact of chloroplast genome sequences on understanding the origins of economically important cultivated species and changes that have taken place during domestication. We also discuss the potential biotechnological applications of chloroplast genomes.

820 citations

Journal ArticleDOI
07 Oct 2011-Science
TL;DR: Fitness-associated loci exhibited both geographic and climatic signatures of local adaptation, and independent local adaptation by distinct genetic mechanisms may facilitate a flexible evolutionary response to changing environment across a species range.
Abstract: Local adaptation is critical for species persistence in the face of rapid environmental change, but its genetic basis is not well understood. Growing the model plant Arabidopsis thaliana in field experiments in four sites across the species' native range, we identified candidate loci for local adaptation from a genome-wide association study of lifetime fitness in geographically diverse accessions. Fitness-associated loci exhibited both geographic and climatic signatures of local adaptation. Relative to genomic controls, high-fitness alleles were generally distributed closer to the site where they increased fitness, occupying specific and distinct climate spaces. Independent loci with different molecular functions contributed most strongly to fitness variation in each site. Independent local adaptation by distinct genetic mechanisms may facilitate a flexible evolutionary response to changing environment across a species range.

640 citations

Journal ArticleDOI
TL;DR: This review describes the various methods available to handle AFLP data, and investigates the characteristics and limitations of these statistical tools, and appeals for a wider adoption of methodologies borrowed from other research fields, like for example those especially designed to deal with binary data.
Abstract: Recently, the amplified fragment length polymorphism (AFLP) technique has gained a lot of popularity, and is now frequently applied to a wide variety of organisms. Technical specificities of the AFLP procedure have been well documented over the years, but there is on the contrary little or scattered information about the statistical analysis of AFLPs. In this review, we describe the various methods available to handle AFLP data, focusing on four research topics at the population or individual level of analysis: (i) assessment of genetic diversity; (ii) identification of population structure; (iii) identification of hybrid individuals; and (iv) detection of markers associated with phenotypes. Two kinds of analysis methods can be distinguished, depending on whether they are based on the direct study of band presences or absences in AFLP profiles ('band-based' methods), or on allelic frequencies estimated at each locus from these profiles ('allele frequency-based' methods). We investigate the characteristics and limitations of these statistical tools; finally, we appeal for a wider adoption of methodologies borrowed from other research fields, like for example those especially designed to deal with binary data.

563 citations