scispace - formally typeset
Search or ask a question
Author

Cedric S. Raine

Bio: Cedric S. Raine is an academic researcher from Albert Einstein College of Medicine. The author has contributed to research in topics: Myelin & Multiple sclerosis. The author has an hindex of 82, co-authored 296 publications receiving 26593 citations. Previous affiliations of Cedric S. Raine include Yeshiva University & Icahn School of Medicine at Mount Sinai.


Papers
More filters
Journal ArticleDOI
TL;DR: Large-scale analysis of transcripts in MS lesions elucidates new aspects of pathology and opens possibilities for therapy, and results in EAE corroborate the microarray studies on MS lesions.
Abstract: Microarray analysis of multiple sclerosis (MS) lesions obtained at autopsy revealed increased transcripts of genes encoding inflammatory cytokines, particularly interleukin-6 and -17, interferon-gamma and associated downstream pathways. Comparison of two poles of MS pathology--acute lesions with inflammation versus 'silent' lesions without inflammation--revealed differentially transcribed genes. Some products of these genes were chosen as targets for therapy of experimental autoimmune encephalomyelitis (EAE) in mice. Granulocyte colony-stimulating factor is upregulated in acute, but not in chronic, MS lesions, and the effect on ameliorating EAE is more pronounced in the acute phase, in contrast to knocking out the immunoglobulin Fc receptor common gamma chain where the effect is greatest on chronic disease. These results in EAE corroborate the microarray studies on MS lesions. Large-scale analysis of transcripts in MS lesions elucidates new aspects of pathology and opens possibilities for therapy.

1,676 citations

Journal ArticleDOI
TL;DR: It appears that a physiological (not structural) demyelination occurs initially without overt destruction of the myelin sheath, relevant to the evolution of the multiple sclerosis plaque: dysfunction of ionic channels might contribute to the eventual demise of oligodendrocytes and axons in the longstanding lesion.
Abstract: Recombinant human tumor necrosis factor (rhTNF) has been tested for its effect on myelinated cultures of mouse spinal cord tissue. As controls, recombinant human interferon gamma (rhIFN) and interleukin-2 (rhIL-2) were tested, as well as T-cell supernatants, antigalactocerebroside serum, and normal culture medium. It was found that rhTNF induced delayed-onset (18-24 hr) oligodendrocyte necrosis and a type of myelin dilatation peculiar to this system. Some nerve fibers progressed to demyelination by 72 hours. The myelin dilatation was not reversible by return to normal feeding solution for 3 days. In contrast, rhIFN, rhIL-2, T-cell supernatants, and normal medium had little or no effect on cultures. This mechanism differs from other immune-mediated mechanisms in that it appears that a physiological (not structural) demyelination occurs initially without overt destruction of the myelin sheath. These observations are relevant to the evolution of the multiple sclerosis plaque: dysfunction of ionic channels might contribute to the eventual demise of oligodendrocytes and axons in the longstanding lesion.

1,401 citations

Journal ArticleDOI
TL;DR: These findings represent direct evidence that autoantibodies against a specific myelin protein mediate target membrane damage in central nervous system demyelinating disease.
Abstract: The molecular mechanisms underlying myelin sheath destruction in multiple sclerosis lesions remain unresolved. With immunogold-labeled peptides of myelin antigens and high-resolution microscopy, techniques that can detect antigen-specific antibodies in situ, we have identified autoantibodies specific for the central nervous system myelin antigen myelin/oligodendrocyte glycoprotein. These autoantibodies were specifically bound to disintegrating myelin around axons in lesions of acute multiple sclerosis and the marmoset model of allergic encephalomyelitis. These findings represent direct evidence that autoantibodies against a specific myelin protein mediate target membrane damage in central nervous system demyelinating disease.

869 citations

Journal ArticleDOI
TL;DR: Glutamate excitotoxicity seems to be an important mechanism in autoimmune demyelination, and its prevention with AMPA/kainate antagonists may prove to be a effective therapy for multiple sclerosis.
Abstract: Glutamate excitotoxicity mediated by the AMPA/kainate type of glutamate receptors damages not only neurons but also the myelin-producing cell of the central nervous system, the oligodendrocyte. In multiple sclerosis, myelin, oligodendrocytes and some axons are lost as a result of an inflammatory attack on the central nervous system. Because glutamate is released in large quantities by activated immune cells, we expected that during inflammation in MS, glutamate excitotoxicity might contribute to the lesion. We addressed this by using the AMPA/kainate antagonist NBQX to treat mice sensitized for experimental autoimmune encephalomyelitis, a demyelinating model that mimics many of the clinical and pathologic features of multiple sclerosis. Treatment resulted in substantial amelioration of disease, increased oligodendrocyte survival and reduced dephosphorylation of neurofilament H, an indicator of axonal damage. Despite the clinical differences, treatment with NBQX had no effect on lesion size and did not reduce the degree of central nervous system inflammation. In addition, NBQX did not alter the proliferative activity of antigen-primed T cells in vitro, further indicating a lack of effect on the immune system. Thus, glutamate excitotoxicity seems to be an important mechanism in autoimmune demyelination, and its prevention with AMPA/kainate antagonists may prove to be an effective therapy for multiple sclerosis.

832 citations

Journal ArticleDOI
TL;DR: Modulation of an immune response from one dominated by excessive activity of Th1-like T cells to onedominated by the protective cytokines produced by Th2- like T cells may have applicability to the therapy of certain human autoimmune diseases.
Abstract: The properties and outcome of an immune response are best predicted by the lymphokine phenotype of the responding T cells. Cytokines produced by CD4+ T helper type 1 (Th1) T cells mediate delayed type hypersensitivity (DTH) and inflammatory responses, whereas cytokines produced by Th2 T cells mediate helper T cell functions for antibody production. To determine whether induction of Th2-like cells would modulate an inflammatory response, interleukin 4 (IL-4) was administered to animals with experimental allergic encephalomyelitis (EAE), a prototypic autoimmune disease produced by Th1-like T cells specific for myelin basic protein (MBP). IL-4 treatment resulted in amelioration of clinical disease, the induction of MBP-specific Th2 cells, diminished demyelination, and inhibition of the synthesis of inflammatory cytokines in the central nervous system (CNS). Modulation of an immune response from one dominated by excessive activity of Th1-like T cells to one dominated by the protective cytokines produced by Th2-like T cells may have applicability to the therapy of certain human autoimmune diseases.

597 citations


Cited by
More filters
Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
10 Mar 1995-Science
TL;DR: In multicellular organisms, homeostasis is maintained through a balance between cell proliferation and cell death, and recent evidence suggests that alterations in cell survival contribute to the pathogenesis of a number of human diseases.
Abstract: In multicellular organisms, homeostasis is maintained through a balance between cell proliferation and cell death. Although much is known about the control of cell proliferation, less is known about the control of cell death. Physiologic cell death occurs primarily through an evolutionarily conserved form of cell suicide termed apoptosis. The decision of a cell to undergo apoptosis can be influenced by a wide variety of regulatory stimuli. Recent evidence suggests that alterations in cell survival contribute to the pathogenesis of a number of human diseases, including cancer, viral infections, autoimmune diseases, neurodegenerative disorders, and AIDS (acquired immunodeficiency syndrome). Treatments designed to specifically alter the apoptotic threshold may have the potential to change the natural progression of some of these diseases.

6,462 citations

Journal ArticleDOI
TL;DR: Findings that have advanced the understanding of IL-10 and its receptor are highlighted, as well as its in vivo function in health and disease.
Abstract: Interleukin-10 (IL-10), first recognized for its ability to inhibit activation and effector function of T cells, monocytes, and macrophages, is a multifunctional cytokine with diverse effects on most hemopoietic cell types. The principal routine function of IL-10 appears to be to limit and ultimately terminate inflammatory responses. In addition to these activities, IL-10 regulates growth and/or differentiation of B cells, NK cells, cytotoxic and helper T cells, mast cells, granulocytes, dendritic cells, keratinocytes, and endothelial cells. IL-10 plays a key role in differentiation and function of a newly appreciated type of T cell, the T regulatory cell, which may figure prominently in control of immune responses and tolerance in vivo. Uniquely among hemopoietic cytokines, IL-10 has closely related homologs in several virus genomes, which testify to its crucial role in regulating immune and inflammatory responses. This review highlights findings that have advanced our understanding of IL-10 and its receptor, as well as its in vivo function in health and disease.

6,308 citations

Journal ArticleDOI
22 Sep 2006-Cell
TL;DR: It is shown that the orphan nuclear receptor RORgammat is the key transcription factor that orchestrates the differentiation of this effector cell lineage of proinflammatory T helper cells and its potential as a therapeutic target in inflammatory diseases is highlighted.

4,616 citations

Journal ArticleDOI
TL;DR: The investigation of the differentiation, effector function, and regulation of Th17 cells has opened up a new framework for understanding T cell differentiation and now appreciate the importance of Th 17 cells in clearing pathogens during host defense reactions and in inducing tissue inflammation in autoimmune disease.
Abstract: CD4+ T cells, upon activation and expansion, develop into different T helper cell subsets with different cytokine profiles and distinct effector functions. Until recently, T cells were divided into Th1 or Th2 cells, depending on the cytokines they produce. A third subset of IL-17-producing effector T helper cells, called Th17 cells, has now been discovered and characterized. Here, we summarize the current information on the differentiation and effector functions of the Th17 lineage. Th17 cells produce IL-17, IL-17F, and IL-22, thereby inducing a massive tissue reaction owing to the broad distribution of the IL-17 and IL-22 receptors. Th17 cells also secrete IL-21 to communicate with the cells of the immune system. The differentiation factors (TGF-β plus IL-6 or IL-21), the growth and stabilization factor (IL-23), and the transcription factors (STAT3, RORγt, and RORα) involved in the development of Th17 cells have just been identified. The participation of TGF-β in the differentiation of Th17 cells places ...

4,548 citations