scispace - formally typeset
Search or ask a question
Author

Cees J. Tack

Bio: Cees J. Tack is an academic researcher from Radboud University Nijmegen. The author has contributed to research in topics: Insulin & Insulin resistance. The author has an hindex of 46, co-authored 234 publications receiving 8262 citations. Previous affiliations of Cees J. Tack include Radboud University Nijmegen Medical Centre.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that mice deficient in Nlrp3, apoptosis-associated speck-like protein, and caspase-1 were resistant to the development of high-fat diet-induced obesity, which correlated with protection from obesity-induced insulin resistance, and inhibition of the inflammasome is suggested as a potential therapeutic strategy.
Abstract: Inflammation plays a key role in the pathogenesis of obesity. Chronic overfeeding leads to macrophage infiltration in the adipose tissue, resulting in proinflammatory cytokine production. Both microbial and endogenous danger signals trigger assembly of the intracellular innate immune sensor Nlrp3, resulting in caspase-1 activation and production of proinflammatory cytokines IL-1β and IL-18. Here, we showed that mice deficient in Nlrp3, apoptosis-associated speck-like protein, and caspase-1 were resistant to the development of high-fat diet-induced obesity, which correlated with protection from obesity-induced insulin resistance. Furthermore, hepatic triglyceride content, adipocyte size, and macrophage infiltration in adipose tissue were all reduced in mice deficient in inflammasome components. Monocyte chemoattractant protein (MCP)-1 is a key molecule that mediates macrophage infiltration. Indeed, defective inflammasome activation was associated with reduced MCP-1 production in adipose tissue. Furthermore, plasma leptin and resistin that affect energy use and insulin sensitivity were also changed by inflammasome-deficiency. Detailed metabolic and molecular phenotyping demonstrated that the inflammasome controls energy expenditure and adipogenic gene expression during chronic overfeeding. These findings reveal a critical function of the inflammasome in obesity and insulin resistance, and suggest inhibition of the inflammasome as a potential therapeutic strategy.

593 citations

Journal ArticleDOI
TL;DR: Recombinant IL-18 (rIL-18) administered intracerebrally inhibited food intake and reversed hyperglycemia in Il18−/− mice through activation of STAT3 phosphorylation, indicating a new role of IL- 18 in the homeostasis of energy intake and insulin sensitivity.
Abstract: Here we report the presence of hyperphagia, obesity and insulin resistance in knockout mice deficient in IL-18 or IL-18 receptor, and in mice transgenic for expression of IL-18 binding protein. Obesity of Il18-/- mice resulted from accumulation of fat tissue based on increased food intake. Il18-/- mice also had hyperinsulinemia, consistent with insulin resistance and hyperglycemia. Insulin resistance was secondary to obesity induced by increased food intake and occurred at the liver level as well as at the muscle and fat-tissue level. The molecular mechanisms responsible for the hepatic insulin resistance in the Il18-/- mice involved an enhanced expression of genes associated with gluconeogenesis in the liver of Il18-/- mice, resulting from defective phosphorylation of STAT3. Recombinant IL-18 (rIL-18) administered intracerebrally inhibited food intake. In addition, rIL-18 reversed hyperglycemia in Il18-/- mice through activation of STAT3 phosphorylation. These findings indicate a new role of IL-18 in the homeostasis of energy intake and insulin sensitivity.

374 citations

Journal ArticleDOI
TL;DR: Caffeine can decrease insulin sensitivity in healthy humans, possibly as a result of elevated plasma epinephrine levels, and peripheral adenosine receptor antagonism does not appear to contribute to this effect.
Abstract: OBJECTIVE —Caffeine is a central stimulant that increases the release of catecholamines. As a component of popular beverages, caffeine is widely used around the world. Its pharmacological effects are predominantly due to adenosine receptor antagonism and include release of catecholamines. We hypothesized that caffeine reduces insulin sensitivity, either due to catecholamines and/or as a result of blocking adenosine-mediated stimulation of peripheral glucose uptake. RESEARCH DESIGN AND METHODS —Hyperinsulinemic-euglycemic glucose clamps were used to assess insulin sensitivity. Caffeine or placebo was administered intravenously to 12 healthy volunteers in a randomized, double-blind, crossover design. Measurements included plasma levels of insulin, catecholamines, free fatty acids (FFAs), and hemodynamic parameters. Insulin sensitivity was calculated as whole-body glucose uptake corrected for the insulin concentration. In a second study, the adenosine reuptake inhibitor dipyridamole was tested using an identical protocol in 10 healthy subjects. RESULTS —Caffeine decreased insulin sensitivity by 15% ( P P P P P P CONCLUSIONS —Caffeine can decrease insulin sensitivity in healthy humans, possibly as a result of elevated plasma epinephrine levels. Because dipyridamole did not affect glucose uptake, peripheral adenosine receptor antagonism does not appear to contribute to this effect.

343 citations

Journal ArticleDOI
TL;DR: Data suggest that activation of the inflammasome represents a crucial step in the road from obesity to insulin resistance and type 2 diabetes.

238 citations


Cited by
More filters
01 Jan 2014
TL;DR: These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, treatment goals, and tools to evaluate the quality of care.
Abstract: XI. STRATEGIES FOR IMPROVING DIABETES CARE D iabetes is a chronic illness that requires continuing medical care and patient self-management education to prevent acute complications and to reduce the risk of long-term complications. Diabetes care is complex and requires that many issues, beyond glycemic control, be addressed. A large body of evidence exists that supports a range of interventions to improve diabetes outcomes. These standards of care are intended to provide clinicians, patients, researchers, payors, and other interested individuals with the components of diabetes care, treatment goals, and tools to evaluate the quality of care. While individual preferences, comorbidities, and other patient factors may require modification of goals, targets that are desirable for most patients with diabetes are provided. These standards are not intended to preclude more extensive evaluation and management of the patient by other specialists as needed. For more detailed information, refer to Bode (Ed.): Medical Management of Type 1 Diabetes (1), Burant (Ed): Medical Management of Type 2 Diabetes (2), and Klingensmith (Ed): Intensive Diabetes Management (3). The recommendations included are diagnostic and therapeutic actions that are known or believed to favorably affect health outcomes of patients with diabetes. A grading system (Table 1), developed by the American Diabetes Association (ADA) and modeled after existing methods, was utilized to clarify and codify the evidence that forms the basis for the recommendations. The level of evidence that supports each recommendation is listed after each recommendation using the letters A, B, C, or E.

9,618 citations

Journal ArticleDOI
TL;DR: The role of adipokines in inflammatory responses is focused on and their potential as regulators of metabolic function is discussed.
Abstract: The worldwide epidemic of obesity has brought considerable attention to research aimed at understanding the biology of adipocytes (fat cells) and the events occurring in adipose tissue (fat) and in the bodies of obese individuals. Accumulating evidence indicates that obesity causes chronic low-grade inflammation and that this contributes to systemic metabolic dysfunction that is associated with obesity-linked disorders. Adipose tissue functions as a key endocrine organ by releasing multiple bioactive substances, known as adipose-derived secreted factors or adipokines, that have pro-inflammatory or anti-inflammatory activities. Dysregulated production or secretion of these adipokines owing to adipose tissue dysfunction can contribute to the pathogenesis of obesity-linked complications. In this Review, we focus on the role of adipokines in inflammatory responses and discuss their potential as regulators of metabolic function.

3,528 citations

Journal ArticleDOI
TL;DR: The IL-1 family includes members that suppress inflammation, both specifically within the IL-2 family but also nonspecifically for TLR ligands and the innate immune response.
Abstract: More than any other cytokine family, the interleukin (IL)-1 family is closely linked to the innate immune response. This linkage became evident upon the discovery that the cytoplasmic domain of the IL-1 receptor type I is highly homologous to the cytoplasmic domains of all Toll-like receptors (TLRs). Thus, fundamental inflammatory responses such as the induction of cyclooxygenase type 2, increased expression of adhesion molecules, or synthesis of nitric oxide are indistinguishable responses of both IL-1 and TLR ligands. Both families nonspecifically affect antigen recognition and lymphocyte function. IL-1β is the most studied member of the IL-1 family because of its role in mediating autoinflammatory diseases. Although the TLR and IL-1 families evolved to assist in host defense against infection, unlike the TLR family, the IL-1 family also includes members that suppress inflammation, both specifically within the IL-1 family but also nonspecifically for TLR ligands and the innate immune response.

3,032 citations

Journal ArticleDOI
TL;DR: Preliminary results from clinical trials with salicylates and interleukin-1 antagonists support the notion that inflammation participates in the pathogenesis of type 2 diabetes and have opened the door for immunomodulatory strategies for the treatment of T2D that simultaneously lower blood glucose levels and potentially reduce the severity and prevalence of the associated complications of this disease.
Abstract: Components of the immune system are altered in obesity and type 2 diabetes (T2D), with the most apparent changes occurring in adipose tissue, the liver, pancreatic islets, the vasculature and circulating leukocytes. These immunological changes include altered levels of specific cytokines and chemokines, changes in the number and activation state of various leukocyte populations and increased apoptosis and tissue fibrosis. Together, these changes suggest that inflammation participates in the pathogenesis of T2D. Preliminary results from clinical trials with salicylates and interleukin-1 antagonists support this notion and have opened the door for immunomodulatory strategies for the treatment of T2D that simultaneously lower blood glucose levels and potentially reduce the severity and prevalence of the associated complications of this disease.

2,845 citations

Journal ArticleDOI
15 May 2002-JAMA
TL;DR: Since most patients with diabetes die from complications of atherosclerosis, they should receive intensive preventive interventions proven to reduce their cardiovascular risk.
Abstract: ContextComplications of atherosclerosis cause most morbidity and mortality in patients with diabetes mellitus. Despite the frequency and severity of disease, proven medical therapy remains incompletely understood and underused.ObjectiveTo review the epidemiology, pathophysiology, and medical and invasive treatment of atherosclerosis in patients with diabetes mellitus.Data SourcesUsing the index terms diabetes mellitus, myocardial infarction, peripheral vascular diseases, cerebrovascular accident, endothelium, vascular smooth muscle, platelets, thrombosis, cholesterol, hypertension, hyperglycemia, insulin, angioplasty, and coronary artery bypass, we searched the MEDLINE and EMBASE databases from 1976 to 2001. Additional data sources included bibliographies of identified articles and preliminary data presented at recent cardiology conferences.Study SelectionWe selected original investigations and reviews of the epidemiology, pathophysiology, and therapy of atherosclerosis in diabetes. We selected randomized, double-blind, controlled studies, when available, to support therapeutic recommendations. Criteria for data inclusion (168 of 396) included publication in a peer-reviewed journal or presentation at a national cardiovascular society–sponsored meeting.Data ExtractionData quality was determined by publication in peer-reviewed literature. Data extraction was performed by one of the authors.Data SynthesisDiabetes mellitus markedly increases the risk of myocardial infarction, stroke, amputation, and death. The metabolic abnormalities caused by diabetes induce vascular dysfunction that predisposes this patient population to atherosclerosis. Blood pressure control, lipid-lowering therapy, angiotensin-converting enzyme inhibition, and antiplatelet drugs significantly reduce the risk of cardiovascular events. Although diabetic patients undergo revascularization procedures because of acute coronary syndromes or critical limb ischemia, the outcomes are less favorable than in nondiabetic cohorts.ConclusionsSince most patients with diabetes die from complications of atherosclerosis, they should receive intensive preventive interventions proven to reduce their cardiovascular risk.

2,627 citations