scispace - formally typeset
Search or ask a question
Author

Celeste C. Linde

Other affiliations: Stellenbosch University
Bio: Celeste C. Linde is an academic researcher from Australian National University. The author has contributed to research in topics: Population & Population genetics. The author has an hindex of 32, co-authored 85 publications receiving 5457 citations. Previous affiliations of Celeste C. Linde include Stellenbosch University.


Papers
More filters
Journal ArticleDOI
TL;DR: A flexible framework to predict the evolutionary potential of pathogen populations based on analysis of their genetic structure is proposed and pathogens that pose the greatest risk of breaking down resistance genes have a mixed reproduction system, a high potential for genotype flow, large effective population sizes, and high mutation rates.
Abstract: ▪ Abstract We hypothesize that the evolutionary potential of a pathogen population is reflected in its population genetic structure. Pathogen populations with a high evolutionary potential are more likely to overcome genetic resistance than pathogen populations with a low evolutionary potential. We propose a flexible framework to predict the evolutionary potential of pathogen populations based on analysis of their genetic structure. According to this framework, pathogens that pose the greatest risk of breaking down resistance genes have a mixed reproduction system, a high potential for genotype flow, large effective population sizes, and high mutation rates. The lowest risk pathogens are those with strict asexual reproduction, low potential for gene flow, small effective population sizes, and low mutation rates. We present examples of high-risk and low-risk pathogens. We propose general guidelines for a rational approach to breed durable resistance according to the evolutionary potential of the pathogen.

1,893 citations

Journal ArticleDOI
TL;DR: A set of guidelines to predict the evolutionary potential of pathogen populations based on analysis of their genetic structure are proposed, suggesting a rational method for breeding durable resistance according to the population genetics of the pathogen.
Abstract: The durability of disease resistance is affected by the evolutionary potential of the pathogen population Pathogens with a high evolutionary potential are more likely to overcome genetic resistance than pathogens with a low evolutionary potential We will propose a set of guidelines to predict the evolutionary potential of pathogen populations based on analysis of their genetic structure Under our model of pathogen evolution, the two most important parameters to consider are reproduction/mating system and gene/genotype flow Pathogens that pose the greatest risk of breaking down resistance genes are those that possess a mixed reproduction system, with at least one sexual cycle per growing season and asexual reproduction during the epidemic phase, and a high potential for gene flow The lowest risk pathogens are those with strict asexual reproduction and low potential for gene flow We will present examples of high- and low-risk pathogens Knowledge of the population genetic structure of the pathogen may offer insight into the best breeding strategy for durable resistance We will present broad guidelines suggesting a rational method for breeding durable resistance according to the population genetics of the pathogen

526 citations

01 Jan 2011
TL;DR: Phylogenetic analyses of multilocus DNA sequence data on R. secalis isolates originating from cultivated barley, rye, triticale and other grasses, including Agropyron spp.
Abstract: Rhynchosporium consists of two species, R. secalis and orthosporum. Both are pathogens of grasses with R. secalis infecting a variety of Poaceae hosts and R. orthosporum infecting Dactylis glomerata. Phylogenetic analyses of multilocus DNA sequence data on R. secalis isolates originating from cultivated barley, rye, triticale and other grasses, including Agropyron spp., Bromus diandrus and Hordeum spp., resolved the monophyletic groups into three species according to their respective hosts. Host specificity according to phylogenetic lineages was confirmed with pathogenicity studies. Because R. secalis was described first on rye this name is retained for Rhynchosporium isolates infecting rye and triticale. Rhynchosporium isolates infecting cultivated barley and other Hordeum spp. and Bromus diandrus belong to a distinct species, R. commune. Similarly isolates infecting Agropyron spp. represent a distinct species of Rhynchosporium, namely R. agropyri. A PCR-RFLP assay was developed as a rapid tool for species identification of R. secalis and commune.

433 citations

Journal ArticleDOI
TL;DR: It is demonstrated that a clear picture of the evolutionary potential of parasitic organisms and their demographic and evolutionary histories can only come from understanding the role of life history and spatial structure in influencing population dynamics and epidemiological patterns.
Abstract: Measures of population genetic structure and diversity of disease-causing organisms are commonly used to draw inferences regarding their evolutionary history and potential to generate new variation in traits that determine interactions with their hosts. Parasite species exhibit a range of population structures and life-history strategies, including different transmission modes, life-cycle complexity, off-host survival mechanisms and dispersal ability. These are important determinants of the frequency and predictability of interactions with host species. Yet the complex causal relationships between spatial structure, life history and the evolutionary dynamics of parasite populations are not well understood. We demonstrate that a clear picture of the evolutionary potential of parasitic organisms and their demographic and evolutionary histories can only come from understanding the role of life history and spatial structure in influencing population dynamics and epidemiological patterns.

323 citations

Journal ArticleDOI
TL;DR: In this article, the genetic structure of field populations of Mycosphaerella graminicola was determined across a hierarchy of spatial scales using restriction fragment length polymorphism markers, and a low but significant correlation between genetic and geographic distance among populations was found (r = -0.47, P = 0.012), suggesting that these populations probably have not reached an equilibrium between gene flow and genetic drift.
Abstract: The genetic structure of field populations of Mycosphaerella graminicola was determined across a hierarchy of spatial scales using restriction fragment length polymorphism markers. The hierarchical gene diversity analysis included 1,098 isolates from seven field populations. Spatial scales ranged from millimeters to thousands of kilometers, including comparisons within and among lesions, within and among fields, and within and among regions and continents. At the smallest spatial scale, microtransect sampling was used to determine the spatial distribution of 15 genotypes found among 158 isolates sampled from five individual lesions. Each lesion had two to six different genotypes including both mating types in four of the five lesions, but in most cases a lesion was composed of one or two genotypes that occupied the majority of the lesion, with other rare genotypes interspersed among the common genotypes. The majority (77%) of gene diversity was distributed within plots ranging from approximately 1 to 9 m(2) in size. Genotype diversity (G / N) within fields for the Swiss, Texas, and Israeli fields was high, ranging from 79 to 100% of maximum possible values. Low population differentiation was indicated by the low G(ST) values among populations, suggesting a corresponding high degree of gene flow among these populations. At the largest spatial scale, populations from Switzerland, Israel, Oregon, and Texas were compared. Population differentiation among these populations was low (G(ST) = 0.05), and genetic identity between populations was high. A low but significant correlation between genetic and geographic distance among populations was found (r = -0.47, P = 0.012), suggesting that these populations probably have not reached an equilibrium between gene flow and genetic drift. Gene flow on a regional level can be reduced by implementing strategies, such as improved stubble management that minimize the production of ascospores. The possibility of high levels of gene flow on a regional level indicates a significant potential risk for the regional spread of mutant alleles that enable fungicide resistance or the breakdown of resistance genes.

277 citations


Cited by
More filters
Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations

Journal ArticleDOI
TL;DR: A short resumé of each fungus in the Top 10 list and its importance is presented, with the intent of initiating discussion and debate amongst the plant mycology community, as well as laying down a bench-mark.
Abstract: The aim of this review was to survey all fungal pathologists with an association with the journal Molecular Plant Pathology and ask them to nominate which fungal pathogens they would place in a 'Top 10' based on scientific/economic importance. The survey generated 495 votes from the international community, and resulted in the generation of a Top 10 fungal plant pathogen list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Magnaporthe oryzae; (2) Botrytis cinerea; (3) Puccinia spp.; (4) Fusarium graminearum; (5) Fusarium oxysporum; (6) Blumeria graminis; (7) Mycosphaerella graminicola; (8) Colletotrichum spp.; (9) Ustilago maydis; (10) Melampsora lini, with honourable mentions for fungi just missing out on the Top 10, including Phakopsora pachyrhizi and Rhizoctonia solani. This article presents a short resume of each fungus in the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant mycology community, as well as laying down a bench-mark. It will be interesting to see in future years how perceptions change and what fungi will comprise any future Top 10.

2,807 citations