scispace - formally typeset
Search or ask a question
Author

Celeste Fleta

Other affiliations: University of Glasgow
Bio: Celeste Fleta is an academic researcher from Spanish National Research Council. The author has contributed to research in topics: Detector & Semiconductor detector. The author has an hindex of 16, co-authored 54 publications receiving 1405 citations. Previous affiliations of Celeste Fleta include University of Glasgow.


Papers
More filters
ReportDOI
01 Feb 2010
TL;DR: The International Large Detector (ILD) is a concept for a detector at the International Linear Collider, ILC as discussed by the authors, which will collide electrons and positrons at energies of initially 500 GeV, upgradeable to 1 TeV.
Abstract: The International Large Detector (ILD) is a concept for a detector at the International Linear Collider, ILC. The ILC will collide electrons and positrons at energies of initially 500 GeV, upgradeable to 1 TeV. The ILC has an ambitious physics program, which will extend and complement that of the Large Hadron Collider (LHC). A hallmark of physics at the ILC is precision. The clean initial state and the comparatively benign environment of a lepton collider are ideally suited to high precision measurements. To take full advantage of the physics potential of ILC places great demands on the detector performance. The design of ILD is driven by these requirements. Excellent calorimetry and tracking are combined to obtain the best possible overall event reconstruction, including the capability to reconstruct individual particles within jets for particle ow calorimetry. This requires excellent spatial resolution for all detector systems. A highly granular calorimeter system is combined with a central tracker which stresses redundancy and efficiency. In addition, efficient reconstruction of secondary vertices and excellent momentum resolution for charged particles are essential for an ILC detector. The interaction region of the ILC is designed to host two detectors, which can be moved into the beam position with a push-pull scheme. The mechanical design of ILD and the overall integration of subdetectors takes these operational conditions into account.

202 citations

Journal ArticleDOI
Francesca Campabadal1, Celeste Fleta1, M.J. Key1, Manuel Lozano1  +151 moreInstitutions (20)
TL;DR: The ABCD3TA as mentioned in this paper is a 128-channel ASIC with binary architecture for the readout of silicon strip particle detectors in the Semiconductor Tracker of the ATLAS experiment at the Large Hadron Collider (LHC).
Abstract: The ABCD3TA is a 128-channel ASIC with binary architecture for the readout of silicon strip particle detectors in the Semiconductor Tracker of the ATLAS experiment at the Large Hadron Collider (LHC). The chip comprises fast front-end and amplitude discriminator circuits using bipolar devices, a binary pipeline for first level trigger latency, a second level derandomising buffer and data compression circuitry based on CMOS devices. It has been designed and fabricated in a BiCMOS radiation resistant process. Extensive testing of the ABCD3TA chips assembled into detector modules show that the design meets the specifications and maintains the required performance after irradiation up to a total ionising dose of 10 Mrad and a 1-MeV neutron equivalent fluence of 2×1014 n/cm2, corresponding to 10 years of operation of the LHC at its design luminosity. Wafer screening and quality assurance procedures have been developed and implemented in large volume production to ensure that the chips assembled into modules meet the rigorous acceptance criteria.

156 citations

Journal ArticleDOI
J. Albert1, Xiao-Chao Fang2, D.S. Smith3, Clara Nellist4  +291 moreInstitutions (45)
TL;DR: In this article, the ATLAS Collaboration will upgrade its semiconductor pixel tracking detector with a new Insertable B-layer (IBL) between the existing pixel detector and the vacuum pipe of the Large Hadron Collider.
Abstract: The ATLAS Collaboration will upgrade its semiconductor pixel tracking detector with a new Insertable B-layer (IBL) between the existing pixel detector and the vacuum pipe of the Large Hadron Collider. The extreme operating conditions at this location have necessitated the development of new radiation hard pixel sensor technologies and a new front-end readout chip, called the FE-I4. Planar pixel sensors and 3D pixel sensors have been investigated to equip this new pixel layer, and prototype modules using the FE-I4A have been fabricated and characterized using 120 GeV pions at the CERN SPS and 4 GeV positrons at DESY, before and after module irradiation. Beam test results are presented, including charge collection efficiency, tracking efficiency and charge sharing.

154 citations

Journal ArticleDOI
TL;DR: The first results on double-sided three-dimensional (3-D) silicon radiation detectors are reported in this paper, which consists of a 3D array of electrodes that penetrate into the detector bulk with the anode and cathode electrodes etched from opposite sides of the substrate.
Abstract: The first results on double-sided three-dimensional (3-D) silicon radiation detectors are reported in this paper. The detector consists of a three-dimensional array of electrodes that penetrate into the detector bulk with the anode and cathode electrodes etched from opposite sides of the substrate. The geometry of the detector is such that a central anode is surrounded by four cathode contacts. The maximum drift and depletion distances are equal to the electrode spacing rather than detector thickness. This structure is similar to a conventional 3-D detector, but has a simpler fabrication process. The technological and the electrical simulations together with the fabrication steps of this new detector configuration are reported in this paper. The first detectors fabricated at CNM are reported here and have been characterized by electrical measurements.

141 citations

Journal ArticleDOI
TL;DR: In this paper, the insertion of a new layer as close as 3.4 cm from the proton beams inside the existing pixel layers of the ATLAS experiment has been discussed, where the detector proximity to the interaction point will require new radiation hard technologies for both sensors and front end electronics.
Abstract: 3D silicon sensors, where electrodes penetrate the silicon substrate fully or partially, have successfully been fabricated in different processing facilities in Europe and USA. The key to 3D fabrication is the use of plasma micro-machining to etch narrow deep vertical openings allowing dopants to be diffused in and form electrodes of pin junctions. Similar openings can be used at the sensor's edge to reduce the perimeter's dead volume to as low as ∼4 μm. Since 2009 four industrial partners of the 3D ATLAS R&D Collaboration started a joint effort aimed at one common design and compatible processing strategy for the production of 3D sensors for the LHC Upgrade and in particular for the ATLAS pixel Insertable B-Layer (IBL). In this project, aimed for installation in 2013, a new layer will be inserted as close as 3.4 cm from the proton beams inside the existing pixel layers of the ATLAS experiment. The detector proximity to the interaction point will therefore require new radiation hard technologies for both sensors and front end electronics. The latter, called FE-I4, is processed at IBM and is the biggest front end of this kind ever designed with a surface of ∼4 cm 2 . The performance of 3D devices from several wafers was evaluated before and after bump-bonding. Key design aspects, device fabrication plans and quality assurance tests during the 3D sensors prototyping phase are discussed in this paper.

113 citations


Cited by
More filters
Book
Georges Aad1, E. Abat2, Jalal Abdallah3, Jalal Abdallah4  +3029 moreInstitutions (164)
23 Feb 2020
TL;DR: The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper, where a brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.
Abstract: The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.

3,111 citations

Journal Article
TL;DR: In this paper, the ATLAS experiment is described as installed in i ts experimental cavern at point 1 at CERN and a brief overview of the expec ted performance of the detector is given.
Abstract: This paper describes the ATLAS experiment as installed in i ts experimental cavern at point 1 at CERN. It also presents a brief overview of the expec ted performance of the detector.

2,798 citations

Journal ArticleDOI
Brad Abbott1, Allan G Clark2, S. Latorre, O. Crespo-Lopez3  +397 moreInstitutions (51)
TL;DR: The motivation for this new pixel layer, the Insertable B-Layer (IBL), was to maintain or improve the robustness and performance of the ATLAS tracking system, given the higher instantaneous and integrated luminosities realised following the shutdown.
Abstract: During the shutdown of the CERN Large Hadron Collider in 2013-2014, an additional pixel layer was installed between the existing Pixel detector of the ATLAS experiment and a new, smaller radius beam pipe. The motivation for this new pixel layer, the Insertable B-Layer (IBL), was to maintain or improve the robustness and performance of the ATLAS tracking system, given the higher instantaneous and integrated luminosities realised following the shutdown. Because of the extreme radiation and collision rate environment, several new radiation-tolerant sensor and electronic technologies were utilised for this layer. This paper reports on the IBL construction and integration prior to its operation in the ATLAS detector.

325 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive review of the properties of epitaxial 4H silicon carbide polytype (4H-SiC) is presented, with particular emphasis on those aspects of this material related to room, high-temperature and harsh environment ionizing radiation detector operation.
Abstract: We present a comprehensive review of the properties of the epitaxial 4H silicon carbide polytype (4H–SiC). Particular emphasis is placed on those aspects of this material related to room, high-temperature and harsh environment ionizing radiation detector operation. A review of the characterization methods and electrical contacting issues and how these are related to detector performance is presented. The most recent data on charge transport parameters across the Schottky barrier and how these are related to radiation spectrometer performance are presented. Experimental results on pixel detectors having equivalent noise energies of 144 eV FWHM (7.8 electrons rms) and 196 eV FWHM at +27 °C and +100 °C, respectively, are reported. Results of studying the radiation resistance of 4H–SiC are analysed. The data on the ionization energies, capture cross section, deep-level centre concentrations and their plausible structures formed in SiC as a result of irradiation with various particles are reviewed. The emphasis is placed on the study of the 1 MeV neutron irradiation, since these thermal particles seem to play the main role in the detector degradation. An accurate electrical characterization of the induced deep-level centres by means of PICTS technique has allowed one to identify which play the main role in the detector degradation.

247 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, A. A. Abdelalim4  +2627 moreInstitutions (185)
TL;DR: The ATLAS Inner Detector as mentioned in this paper is a composite tracking system consisting of silicon pixels, silicon strips and straw tubes in a 2 T magnetic field, which was completed in 2008 and the detector took part in data-taking with single LHC beams and cosmic rays.
Abstract: The ATLAS Inner Detector is a composite tracking system consisting of silicon pixels, silicon strips and straw tubes in a 2 T magnetic field. Its installation was completed in August 2008 and the detector took part in data-taking with single LHC beams and cosmic rays. The initial detector operation, hardware commissioning and in-situ calibrations are described. Tracking performance has been measured with 7.6 million cosmic-ray events, collected using a tracking trigger and reconstructed with modular pattern-recognition and fitting software. The intrinsic hit efficiency and tracking trigger efficiencies are close to 100%. Lorentz angle measurements for both electrons and holes, specific energy-loss calibration and transition radiation turn-on measurements have been performed. Different alignment techniques have been used to reconstruct the detector geometry. After the initial alignment, a transverse impact parameter resolution of 22.1 +/- 0.9 mu m and a relative momentum resolution sigma (p) /p=(4.83 +/- 0.16)x10(-4) GeV(-1)xp (T) have been measured for high momentum tracks.

181 citations