scispace - formally typeset
Search or ask a question
Author

Celine Hin

Bio: Celine Hin is an academic researcher from Virginia Tech. The author has contributed to research in topics: Oxide & Kinetic Monte Carlo. The author has an hindex of 10, co-authored 31 publications receiving 237 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A wavelet-based scheme that encodes the essential dynamics of discrete microscale surface reactions in a form that can be coupled with continuum macroscale flow simulations with high computational efficiency makes it possible to simulate the dynamic behavior of reactor-scale heterogeneous catalysis without requiring detailed concurrent simulations at both the surface and continuum scales.

33 citations

Journal ArticleDOI
TL;DR: The SQERTSS algorithm is designed for use in achieving and simulating steady-state conditions in KMC simulations and works for transient conditions: the correct configuration space and final state will still be achieved if the required assumptions are not violated, with the caveat that the sizes of the time-steps may be distorted during the transient period.

29 citations

Journal ArticleDOI
TL;DR: In this paper, an advanced nonequilibrium thermodynamic model for electron and phonon transport is formulated based on the steepestentropy-ascent quantum thermodynamics framework, which is applicable at all temporal and spatial scales even in the far-from-equilibrium realm.
Abstract: An advanced nonequilibrium thermodynamic model for electron and phonon transport is formulated based on the steepest-entropy-ascent quantum thermodynamics framework. This framework, based on the principle of steepest entropy ascent (or the equivalent maximum entropy production principle), inherently satisfies the laws of thermodynamics and mechanics and is applicable at all temporal and spatial scales even in the far-from-equilibrium realm. Specifically, the model is proven to recover the Boltzmann transport equations in the near-equilibrium limit and the two-temperature model of electron-phonon coupling when no dispersion is assumed. The heat and mass transport at a temperature discontinuity across a homogeneous interface where the dispersion and coupling of electron and phonon transport are both considered are then modeled. Local nonequilibrium system evolution and nonquasiequilibrium interactions are predicted and the results discussed.

25 citations

Journal ArticleDOI
TL;DR: In this article, the authors performed density functional theory (DFT) calculations to study the hydrogen release mechanism at the typical Al/SiO 2 metal-oxide interface and found that interstitial hydrogen atoms can break interfacial Al Si bonds, passivating a Si sp 3 orbital and forming stable Al H Al bridges.

19 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the interaction of helium with the Y 2 Ti 2 O 7 structure and show that a large effect due to electron-electron repulsion is observed between the oxygen and helium electrons and an overall change in the bonding nature of atoms in the immediate vicinity is noticed when helium interstitials are present.

19 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Journal ArticleDOI
TL;DR: In this paper, the projection of the eigenfunctions obtained in standard plane-wave first-principle electronic-structure calculations into atomic-orbital basis sets is proposed as a formal and practical link between the methods based on plane waves and the ones based on atomic orbitals.
Abstract: The projection of the eigenfunctions obtained in standard plane-wave first-principle electronic-structure calculations into atomic-orbital basis sets is proposed as a formal and practical link between the methods based on plane waves and the ones based on atomic orbitals. Given a candidate atomic basis, ({\it i}) its quality is evaluated by its projection into the plane-wave eigenfunctions, ({\it ii}) it is optimized by maximizing that projection, ({\it iii}) the associated tight-binding Hamiltonian and energy bands are obtained, and ({\it iv}) population analysis is performed in a natural way. The proposed method replaces the traditional trial-and-error procedures of finding appropriate atomic bases and the fitting of bands to obtain tight-binding Hamiltonians. Test calculations of some zincblende semiconductors are presented.

349 citations

01 Jan 2002
TL;DR: It is suggested that by 2020, the number of students attending classes at the University of Southern California will have risen to about 20,000, up from about 10,000 in 1980.
Abstract: ?? ????? ??????? ??? ????????????? ?????? ??????? ???? ??????? ????????????? ??? ???????? ?? 1978 ??? ?? ????? ?????? ???? ??? ?? 1980. ??????, ??????????? ??? 2020, ??????? 17 ???? ??? ??? ??????? 25 ?????????. ?? 1995 ?? ????? ??????????? ??? ????????? ?????? ???? ??????? ??? ??????, ???? ????????????????? ??? ???????? ??? ?????? ??? ????????? ?????? 8 ??? ??????????? ??? ??? ???? ??? ?????????. ?? ???????? ??? ????? ?????? ??? ????? ????????? ?? ????? ??????? ???? ?? ?? ????? ????????? ??????????? [1] ??? ?? ?????? ??????????? ???? ???????? [2], ???????? ??? Univ. of Southern California (???).

311 citations

Journal ArticleDOI
TL;DR: This comprehensive review discusses the recent progress in graphene-, 2D transition metal dichalcogenide-, and 2D black phosphorus-based FET sensors, with an emphasis on rapid and low-concentration detection of gases, biomolecules, and water contaminants.
Abstract: Meeting the increasing demand for sensors with high sensitivity, high selectivity, and rapid detection presents many challenges In the last decade, electronic sensors based on field-effect transistors (FETs) have been widely studied due to their high sensitivity, rapid detection, and simple test procedure Among these sensors, two-dimensional (2D) nanomaterial-based FET sensors have been demonstrated with tremendous potential for the detection of a wide range of analytes which is attributed to the unique structural and electronic properties of 2D nanomaterials This comprehensive review discusses the recent progress in graphene-, 2D transition metal dichalcogenide-, and 2D black phosphorus-based FET sensors, with an emphasis on rapid and low-concentration detection of gases, biomolecules, and water contaminants

299 citations