scispace - formally typeset
Search or ask a question
Author

Cetin Anli

Bio: Cetin Anli is an academic researcher from Univates. The author has contributed to research in topics: Kinase & Chemistry. The author has an hindex of 1, co-authored 1 publications receiving 1 citations.
Topics: Kinase, Chemistry, In silico, Brain damage, Kinome

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an updated literature review was carried out regarding neurological disorders in COVID-19 patients, and neurological symptoms are more common in patients with severe infection according to their respiratory status and divided into three categories: (1) CNS manifestations; (2) cranial and peripheral nervous system manifestations; and (3) skeletal muscle injury manifestations.
Abstract: SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2) affects the central nervous system (CNS), which is shown in a significant number of patients with neurological events. In this study, an updated literature review was carried out regarding neurological disorders in COVID-19. Neurological symptoms are more common in patients with severe infection according to their respiratory status and divided into three categories: (1) CNS manifestations; (2) cranial and peripheral nervous system manifestations; and (3) skeletal muscle injury manifestations. Patients with pre-existing cerebrovascular disease are at a higher risk of admission to the intensive care unit (ICU) and mortality. The neurological manifestations associated with COVID-19 are of great importance, but when life-threatening abnormal vital signs occur in severely ill COVID-19 patients, neurological problems are usually not considered. It is crucial to search for new treatments for brain damage, as well as for alternative therapies that recover the damaged brain and reduce the inflammatory response and its consequences for other organs. In addition, there is a need to diagnose these manifestations as early as possible to limit long-term consequences. Therefore, much research is needed to explain the involvement of SARS-CoV-2 causing these neurological symptoms because scientists know zero about it.

8 citations

Journal ArticleDOI
TL;DR: Based on in-silico data, Wang et al. as mentioned in this paper designed and synthesized a comprehensive set of novel urea-based inhibitors and characterized them in diverse biochemical assays, which were further evaluated in cellular models, selectivity and early DMPK properties.
Abstract: The ATM kinase is a key molecule regulating DNA damage response and can be targeted resulting in efficient radio- or chemosensitization. Due to the enormous size of this protein and the associated difficulties in obtaining high-quality crystal structures, we sought to develop an accurate in silico model to identify new targeting possibilities. We identified a urea group as the most beneficial chemical anchor point, which could undergo multiple interactions in the aspartate-rich hydrophobic region I of the atypical ATM kinase domain. Based on in silico data, we designed and synthesized a comprehensive set of novel urea-based inhibitors and characterized them in diverse biochemical assays. Using this strategy, we identified inhibitors with subnanomolar potency, which were further evaluated in cellular models, selectivity and early DMPK properties. Finally, the two lead compounds 34 and 39 exhibited subnanomolar cellular activity along with an excellent selectivity profile and favorable metabolic stability.

3 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors analyzed persistent symptoms, nutritional status, the evolution of muscle strength and performance status (PS) at 6 months post-discharge in a cohort of COVID-19 survivors.
Abstract: Post-acute consequences of COVID-19, also termed long COVID, include signs and symptoms persisting for more than 12 weeks with prolonged multisystem involvement; most often, however, malnutrition is ignored. Method: The objective was to analyze persistent symptoms, nutritional status, the evolution of muscle strength and performance status (PS) at 6 months post-discharge in a cohort of COVID-19 survivors. Results: Of 549 consecutive patients hospitalized for COVID-19 between 1 March and 29 April 2020, 23.7% died and 288 patients were at home at D30 post-discharge. At this date, 136 of them (47.2%) presented persistent malnutrition, a significant decrease in muscle strength or a PS ≥ 2. These patients received dietary counseling, nutritional supplementation, adapted physical activity guidance or physiotherapy assistance, or were admitted to post-care facilities. At 6 months post-discharge, 91.0% of the 136 patients (n = 119) were evaluated and 36.0% had persistent malnutrition, 14.3% complained of a significant decrease in muscle strength and 14.9% had a performance status > 2. Obesity was more frequent in patients with impairment than in those without (52.8% vs. 31.0%; p = 0.0071), with these patients being admitted more frequently to ICUs (50.9% vs. 31.3%; p = 0.010). Among those with persistent symptoms, 10% had psychiatric co-morbidities (mood disorders, anxiety, or post-traumatic stress syndrome), 7.6% had prolonged pneumological symptoms and 4.2% had neurological symptoms. Conclusions: Obese subjects as well as patients who have stayed in intensive care have a higher risk of functional loss or undernutrition 6 months after a severe COVID infection. Malnutrition and loss of muscle strength should be considered in the clinical assessment of these patients.

22 citations

Journal ArticleDOI
TL;DR: In this article , the development of mast cell activation disorder (MCAS) was correlated with COVID-19 severity and the post-COVID syndrome (PCS), which is characterized by hyperactivation of mast cells with inappropriate and excessive release of chemical mediators.
Abstract: Abstract Most COVID-19 patients recovered with low mortality; however, some patients experienced long-term symptoms described as “long-COVID” or “Post-COVID syndrome” (PCS). Patients may have persisting symptoms for weeks after acute SARS-CoV-2 infection, including dyspnea, fatigue, myalgia, insomnia, cognitive and olfactory disorders. These symptoms may last for months in some patients. PCS may progress in association with the development of mast cell activation syndrome (MCAS), which is a distinct kind of mast cell activation disorder, characterized by hyper-activation of mast cells with inappropriate and excessive release of chemical mediators. COVID-19 survivors, mainly women, and patients with persistent severe fatigue for 10 weeks after recovery with a history of neuropsychiatric disorders are more prone to develop PCS. High D-dimer levels and blood urea nitrogen were observed to be risk factors associated with pulmonary dysfunction in COVID-19 survivors 3 months post-hospital discharge with the development of PCS. PCS has systemic manifestations that resolve with time with no further complications. However, the final outcomes of PCS are chiefly unknown. Persistence of inflammatory reactions, autoimmune mimicry, and reactivation of pathogens together with host microbiome alterations may contribute to the development of PCS. The deregulated release of inflammatory mediators in MCAS produces extraordinary symptoms in patients with PCS. The development of MCAS during the course of SARS-CoV-2 infection is correlated to COVID-19 severity and the development of PCS. Therefore, MCAS is treated by antihistamines, inhibition of synthesis of mediators, inhibition of mediator release, and inhibition of degranulation of mast cells.

17 citations

Journal ArticleDOI
TL;DR: In this paper , cases of pneumonia caused by infection with the previously unknown severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), leading to CoV-19 (COVID-19), were identified.

7 citations

Journal ArticleDOI
TL;DR: In this paper , the potential anti-inflammatory and antioxidant effects of citicoline in the management of COVID-19 were reviewed, which is a current pandemic disease caused by severe acute respiratory syndrome coronavirus virus respiratory type 2 (SARS-CoV-2).
Abstract: Coronavirus disease 2019 (COVID-19) is a current pandemic disease caused by a novel severe acute respiratory syndrome coronavirus virus respiratory type 2 (SARS-CoV-2). SARS-CoV-2 infection is linked with various neurological manifestations due to cytokine-induced disruption of the blood brain barrier (BBB), neuroinflammation, and peripheral neuronal injury, or due to direct SARS-CoV-2 neurotropism. Of note, many repurposed agents were included in different therapeutic protocols in the management of COVID-19. These agents did not produce an effective therapeutic eradication of SARS-CoV-2, and continuing searching for novel anti-SARS-CoV-2 agents is a type of challenge nowadays. Therefore, this study aimed to review the potential anti-inflammatory and antioxidant effects of citicoline in the management of COVID-19.

5 citations

Journal ArticleDOI
TL;DR: In this paper , the authors demonstrate that despite showing differences in structure and targeting, many viruses have highly similar neuropsychiatric effects on the host, and that secondary induced environmental stress can lead to the emergence of psychopathologies and increased susceptibility to viral (re)infection in infected individuals.
Abstract: Long COVID, in which disease-related symptoms persist for months after recovery, has led to a revival of the discussion of whether neuropsychiatric long-term symptoms after viral infections indeed result from virulent activity or are purely psychological phenomena. In this review, we demonstrate that, despite showing differences in structure and targeting, many viruses have highly similar neuropsychiatric effects on the host. Herein, we compare severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human immunodeficiency virus 1 (HIV-1), Ebola virus disease (EVD), and herpes simplex virus 1 (HSV-1). We provide evidence that the mutual symptoms of acute and long-term anxiety, depression and post-traumatic stress among these viral infections are likely to result from primary viral activity, thus suggesting that these viruses share neuroinvasive strategies in common. Moreover, it appears that secondary induced environmental stress can lead to the emergence of psychopathologies and increased susceptibility to viral (re)infection in infected individuals. We hypothesize that a positive feedback loop of virus-environment-reinforced systemic responses exists. It is surmised that this cycle of primary virulent activity and secondary stress-induced reactivation, may be detrimental to infected individuals by maintaining and reinforcing the host's immunocompromised state of chronic inflammation, immunological strain, and maladaptive central-nervous-system activity. We propose that this state can lead to perturbed cognitive processing and promote aversive learning, which may manifest as acute, long-term neuropsychiatric illness.

3 citations