scispace - formally typeset
Search or ask a question
Author

Ceyhun Eksin

Bio: Ceyhun Eksin is an academic researcher from Texas A&M University. The author has contributed to research in topics: Nash equilibrium & Fictitious play. The author has an hindex of 13, co-authored 73 publications receiving 666 citations. Previous affiliations of Ceyhun Eksin include Lanzhou University & Carnegie Mellon University.


Papers
More filters
Journal ArticleDOI
TL;DR: A unified approach to analyze and understand the coupled evolution of strategies and the environment is proposed, identifying an oscillatory tragedy of the commons in which the system cycles between deplete and replete environments and cooperation and defection behavior states and incentivizing cooperation when others defect in the depleted state is found.
Abstract: A tragedy of the commons occurs when individuals take actions to maximize their payoffs even as their combined payoff is less than the global maximum had the players coordinated. The originating example is that of overgrazing of common pasture lands. In game-theoretic treatments of this example, there is rarely consideration of how individual behavior subsequently modifies the commons and associated payoffs. Here, we generalize evolutionary game theory by proposing a class of replicator dynamics with feedback-evolving games in which environment-dependent payoffs and strategies coevolve. We initially apply our formulation to a system in which the payoffs favor unilateral defection and cooperation, given replete and depleted environments, respectively. Using this approach, we identify and characterize a class of dynamics: an oscillatory tragedy of the commons in which the system cycles between deplete and replete environmental states and cooperation and defection behavior states. We generalize the approach to consider outcomes given all possible rational choices of individual behavior in the depleted state when defection is favored in the replete state. In so doing, we find that incentivizing cooperation when others defect in the depleted state is necessary to avert the tragedy of the commons. In closing, we propose directions for the study of control and influence in games in which individual actions exert a substantive effect on the environmental state.

155 citations

Journal ArticleDOI
TL;DR: It is shown that incorporating fatigue and long-term behavior change can explain this phenomenon, shed light on when post-peak dynamics are likely to lead to a resurgence of cases or to sustained declines, and inform public health campaigns to control COVID-19.
Abstract: The COVID-19 pandemic has caused more than 1,000,000 reported deaths globally, of which more than 200,000 have been reported in the United States as of October 1, 2020. Public health interventions have had significant impacts in reducing transmission and in averting even more deaths. Nonetheless, in many jurisdictions, the decline of cases and fatalities after apparent epidemic peaks has not been rapid. Instead, the asymmetric decline in cases appears, in most cases, to be consistent with plateau- or shoulder-like phenomena-a qualitative observation reinforced by a symmetry analysis of US state-level fatality data. Here we explore a model of fatality-driven awareness in which individual protective measures increase with death rates. In this model, fast increases to the peak are often followed by plateaus, shoulders, and lag-driven oscillations. The asymmetric shape of model-predicted incidence and fatality curves is consistent with observations from many jurisdictions. Yet, in contrast to model predictions, we find that population-level mobility metrics usually increased from low levels before fatalities reached an initial peak. We show that incorporating fatigue and long-term behavior change can reconcile the apparent premature relaxation of mobility reductions and help understand when post-peak dynamics are likely to lead to a resurgence of cases.

112 citations

Journal ArticleDOI
TL;DR: This work compares the dynamics arising from a simple SIR epidemic model with those from a modified SIR model in which individuals reduce contacts as a function of the current or cumulative number of cases to highlight the value of incorporating behavior change into baseline epidemic and dynamic forecast models.

76 citations

Journal ArticleDOI
TL;DR: A model of the electricity market that captures the uncertainties on both the operator and user sides is proposed and an explicit characterization of the optimal user behavior using the Bayesian Nash equilibrium solution concept is derived.
Abstract: Consumer demand profiles and fluctuating renewable power generation are two main sources of uncertainty in matching demand and supply. This paper proposes a model of the electricity market that captures the uncertainties on both the operator and user sides. The system operator (SO) implements a temporal linear pricing strategy that depends on real-time demand and renewable generation in the considered period combining real-time pricing with time-of-use pricing. The announced pricing strategy sets up a noncooperative game of incomplete information among the users with heterogeneous, but correlated consumption preferences. An explicit characterization of the optimal user behavior using the Bayesian Nash equilibrium solution concept is derived. This explicit characterization allows the SO to derive pricing policies that influence demand to serve practical objectives, such as minimizing peak-to-average ratio or attaining a desired rate of return. Numerical experiments show that the pricing policies yield close to optimal welfare values while improving these practical objectives.

74 citations

Posted ContentDOI
04 Nov 2016-bioRxiv
TL;DR: This work generalizes evolutionary game theory by proposing a class of replicator dynamics with feedback-evolving games in which environment-dependent payoffs and strategies coevolve and finds that incentivizing cooperation when others defect in the depleted state is necessary to avert the tragedy of the commons.
Abstract: A tragedy of the commons occurs when individuals take actions to maximize their payoffs even as their combined payoff is less than the global maximum had the players coordinated. The originating example is that of over-grazing of common pasture lands. In game theoretic treatments of this example there is rarely consideration of how individual behavior subsequently modiffes the commons and associated payoffs. Here, we generalize evolutionary game theory by proposing a class of replicator dynamics with feedback-evolving games in which environment-dependent payoffs and strategies coevolve. We apply our formulation to a system in which the payoffs favor unilateral defection and cooperation, given replete and depleted environments respectively. Using this approach we identify a new class of dynamics: an oscillatory tragedy of the commons in which the system cycles between deplete and replete environmental states and cooperation and defection behavior states. We generalize the approach to consider outcomes given all possible rational choices of individual behavior in the depleted state when defection is favored in the replete state. In so doing we find that incentivizing cooperation when others defect in the depleted state is necessary to avert the tragedy of the commons. In closing, we propose new directions for the study of control and influence in games in which individual actions exert a substantive effect on the environmental state.

51 citations


Cited by
More filters
Journal ArticleDOI

6,278 citations

Book
01 Jan 2001
TL;DR: This chapter discusses Decision-Theoretic Foundations, Game Theory, Rationality, and Intelligence, and the Decision-Analytic Approach to Games, which aims to clarify the role of rationality in decision-making.
Abstract: Preface 1. Decision-Theoretic Foundations 1.1 Game Theory, Rationality, and Intelligence 1.2 Basic Concepts of Decision Theory 1.3 Axioms 1.4 The Expected-Utility Maximization Theorem 1.5 Equivalent Representations 1.6 Bayesian Conditional-Probability Systems 1.7 Limitations of the Bayesian Model 1.8 Domination 1.9 Proofs of the Domination Theorems Exercises 2. Basic Models 2.1 Games in Extensive Form 2.2 Strategic Form and the Normal Representation 2.3 Equivalence of Strategic-Form Games 2.4 Reduced Normal Representations 2.5 Elimination of Dominated Strategies 2.6 Multiagent Representations 2.7 Common Knowledge 2.8 Bayesian Games 2.9 Modeling Games with Incomplete Information Exercises 3. Equilibria of Strategic-Form Games 3.1 Domination and Ratonalizability 3.2 Nash Equilibrium 3.3 Computing Nash Equilibria 3.4 Significance of Nash Equilibria 3.5 The Focal-Point Effect 3.6 The Decision-Analytic Approach to Games 3.7 Evolution. Resistance. and Risk Dominance 3.8 Two-Person Zero-Sum Games 3.9 Bayesian Equilibria 3.10 Purification of Randomized Strategies in Equilibria 3.11 Auctions 3.12 Proof of Existence of Equilibrium 3.13 Infinite Strategy Sets Exercises 4. Sequential Equilibria of Extensive-Form Games 4.1 Mixed Strategies and Behavioral Strategies 4.2 Equilibria in Behavioral Strategies 4.3 Sequential Rationality at Information States with Positive Probability 4.4 Consistent Beliefs and Sequential Rationality at All Information States 4.5 Computing Sequential Equilibria 4.6 Subgame-Perfect Equilibria 4.7 Games with Perfect Information 4.8 Adding Chance Events with Small Probability 4.9 Forward Induction 4.10 Voting and Binary Agendas 4.11 Technical Proofs Exercises 5. Refinements of Equilibrium in Strategic Form 5.1 Introduction 5.2 Perfect Equilibria 5.3 Existence of Perfect and Sequential Equilibria 5.4 Proper Equilibria 5.5 Persistent Equilibria 5.6 Stable Sets 01 Equilibria 5.7 Generic Properties 5.8 Conclusions Exercises 6. Games with Communication 6.1 Contracts and Correlated Strategies 6.2 Correlated Equilibria 6.3 Bayesian Games with Communication 6.4 Bayesian Collective-Choice Problems and Bayesian Bargaining Problems 6.5 Trading Problems with Linear Utility 6.6 General Participation Constraints for Bayesian Games with Contracts 6.7 Sender-Receiver Games 6.8 Acceptable and Predominant Correlated Equilibria 6.9 Communication in Extensive-Form and Multistage Games Exercises Bibliographic Note 7. Repeated Games 7.1 The Repeated Prisoners Dilemma 7.2 A General Model of Repeated Garnet 7.3 Stationary Equilibria of Repeated Games with Complete State Information and Discounting 7.4 Repeated Games with Standard Information: Examples 7.5 General Feasibility Theorems for Standard Repeated Games 7.6 Finitely Repeated Games and the Role of Initial Doubt 7.7 Imperfect Observability of Moves 7.8 Repeated Wines in Large Decentralized Groups 7.9 Repeated Games with Incomplete Information 7.10 Continuous Time 7.11 Evolutionary Simulation of Repeated Games Exercises 8. Bargaining and Cooperation in Two-Person Games 8.1 Noncooperative Foundations of Cooperative Game Theory 8.2 Two-Person Bargaining Problems and the Nash Bargaining Solution 8.3 Interpersonal Comparisons of Weighted Utility 8.4 Transferable Utility 8.5 Rational Threats 8.6 Other Bargaining Solutions 8.7 An Alternating-Offer Bargaining Game 8.8 An Alternating-Offer Game with Incomplete Information 8.9 A Discrete Alternating-Offer Game 8.10 Renegotiation Exercises 9. Coalitions in Cooperative Games 9.1 Introduction to Coalitional Analysis 9.2 Characteristic Functions with Transferable Utility 9.3 The Core 9.4 The Shapkey Value 9.5 Values with Cooperation Structures 9.6 Other Solution Concepts 9.7 Colational Games with Nontransferable Utility 9.8 Cores without Transferable Utility 9.9 Values without Transferable Utility Exercises Bibliographic Note 10. Cooperation under Uncertainty 10.1 Introduction 10.2 Concepts of Efficiency 10.3 An Example 10.4 Ex Post Inefficiency and Subsequent Oilers 10.5 Computing Incentive-Efficient Mechanisms 10.6 Inscrutability and Durability 10.7 Mechanism Selection by an Informed Principal 10.8 Neutral Bargaining Solutions 10.9 Dynamic Matching Processes with Incomplete Information Exercises Bibliography Index

3,569 citations

Book ChapterDOI
01 Jan 1998
TL;DR: In this paper, the authors explore questions of existence and uniqueness for solutions to stochastic differential equations and offer a study of their properties, using diffusion processes as a model of a Markov process with continuous sample paths.
Abstract: We explore in this chapter questions of existence and uniqueness for solutions to stochastic differential equations and offer a study of their properties. This endeavor is really a study of diffusion processes. Loosely speaking, the term diffusion is attributed to a Markov process which has continuous sample paths and can be characterized in terms of its infinitesimal generator.

2,446 citations

Book ChapterDOI
01 Jan 1977
TL;DR: In the Hamadryas baboon, males are substantially larger than females, and a troop of baboons is subdivided into a number of ‘one-male groups’, consisting of one adult male and one or more females with their young.
Abstract: In the Hamadryas baboon, males are substantially larger than females. A troop of baboons is subdivided into a number of ‘one-male groups’, consisting of one adult male and one or more females with their young. The male prevents any of ‘his’ females from moving too far from him. Kummer (1971) performed the following experiment. Two males, A and B, previously unknown to each other, were placed in a large enclosure. Male A was free to move about the enclosure, but male B was shut in a small cage, from which he could observe A but not interfere. A female, unknown to both males, was then placed in the enclosure. Within 20 minutes male A had persuaded the female to accept his ownership. Male B was then released into the open enclosure. Instead of challenging male A , B avoided any contact, accepting A’s ownership.

2,364 citations

Journal ArticleDOI
TL;DR: An adaptive diffusion mechanism to optimize global cost functions in a distributed manner over a network of nodes, which endow networks with adaptation abilities that enable the individual nodes to continue learning even when the cost function changes with time.
Abstract: We propose an adaptive diffusion mechanism to optimize global cost functions in a distributed manner over a network of nodes. The cost function is assumed to consist of a collection of individual components. Diffusion adaptation allows the nodes to cooperate and diffuse information in real-time; it also helps alleviate the effects of stochastic gradient noise and measurement noise through a continuous learning process. We analyze the mean-square-error performance of the algorithm in some detail, including its transient and steady-state behavior. We also apply the diffusion algorithm to two problems: distributed estimation with sparse parameters and distributed localization. Compared to well-studied incremental methods, diffusion methods do not require the use of a cyclic path over the nodes and are robust to node and link failure. Diffusion methods also endow networks with adaptation abilities that enable the individual nodes to continue learning even when the cost function changes with time. Examples involving such dynamic cost functions with moving targets are common in the context of biological networks.

672 citations