scispace - formally typeset
Search or ask a question
Author

Chad Garner

Bio: Chad Garner is an academic researcher from University of California, Irvine. The author has contributed to research in topics: Population & Quantitative trait locus. The author has an hindex of 23, co-authored 54 publications receiving 2845 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A genome-wide association mapping strategy is applied to individuals with contrasting extreme trait values and a new F cell quantitative trait locus is mapped to BCL11A, which encodes a zinc-finger protein, on chromosome 2p15.
Abstract: F cells measure the presence of fetal hemoglobin, a heritable quantitative trait in adults that accounts for substantial phenotypic diversity of sickle cell disease and beta thalassemia. We applied a genome-wide association mapping strategy to individuals with contrasting extreme trait values and mapped a new F cell quantitative trait locus to BCL11A, which encodes a zinc-finger protein, on chromosome 2p15. The 2p15 BCL11A quantitative trait locus accounts for 15.1% of the trait variance.

492 citations

Journal ArticleDOI
TL;DR: An important mechanism by which Wnt‐driven Warburg metabolism directs the use of glucose for cancer cell proliferation and links it to vessel delivery of oxygen and nutrients is identified.
Abstract: Much of the mechanism by which Wnt signaling drives proliferation during oncogenesis is attributed to its regulation of the cell cycle. Here, we show how Wnt/β-catenin signaling directs another hallmark of tumorigenesis, namely Warburg metabolism. Using biochemical assays and fluorescence lifetime imaging microscopy (FLIM) to probe metabolism in vitro and in living tumors, we observe that interference with Wnt signaling in colon cancer cells reduces glycolytic metabolism and results in small, poorly perfused tumors. We identify pyruvate dehydrogenase kinase 1 (PDK1) as an important direct target within a larger gene program for metabolism. PDK1 inhibits pyruvate flux to mitochondrial respiration and a rescue of its expression in Wnt-inhibited cancer cells rescues glycolysis as well as vessel growth in the tumor microenvironment. Thus, we identify an important mechanism by which Wnt-driven Warburg metabolism directs the use of glucose for cancer cell proliferation and links it to vessel delivery of oxygen and nutrients.

335 citations

Journal ArticleDOI
TL;DR: The results support a key role for the HBS1L-related genetic variants in HbF control and illustrate the biological complexity of the mechanism of 6q QTL as a modifier of fetal hemoglobin levels in the β hemoglobinopathies.
Abstract: Individual variation in fetal hemoglobin (HbF, α2γ2) response underlies the remarkable diversity in phenotypic severity of sickle cell disease and β thalassemia. HbF levels and HbF-associated quantitative traits (e.g., F cell levels) are highly heritable. We have previously mapped a major quantitative trait locus (QTL) controlling F cell levels in an extended Asian-Indian kindred with β thalassemia to a 1.5-Mb interval on chromosome 6q23, but the causative gene(s) are not known. The QTL encompasses several genes including HBS1L, a member of the GTP-binding protein family that is expressed in erythroid progenitor cells. In this high-resolution association study, we have identified multiple genetic variants within and 5′ to HBS1L at 6q23 that are strongly associated with F cell levels in families of Northern European ancestry (P = 10−75). The region accounts for 17.6% of the F cell variance in northern Europeans. Although mRNA levels of HBS1L and MYB in erythroid precursors grown in vitro are positively correlated, only HBS1L expression correlates with high F cell alleles. The results support a key role for the HBS1L-related genetic variants in HbF control and illustrate the biological complexity of the mechanism of 6q QTL as a modifier of fetal hemoglobin levels in the β hemoglobinopathies.

306 citations

Journal ArticleDOI
TL;DR: A whole-genome sequencing study of common, low-frequency and rare variants to associate genetic variations with blood metabolite levels using comprehensive metabolite profiling in 1,960 adults highlights the importance of heterozygous rare variants in determining abnormal blood metabolic phenotypes in adults.
Abstract: Genetic factors modifying the blood metabolome have been investigated through genome-wide association studies (GWAS) of common genetic variants and through exome sequencing. We conducted a whole-genome sequencing study of common, low-frequency and rare variants to associate genetic variations with blood metabolite levels using comprehensive metabolite profiling in 1,960 adults. We focused the analysis on 644 metabolites with consistent levels across three longitudinal data collections. Genetic sequence variations at 101 loci were associated with the levels of 246 (38%) metabolites (P ≤ 1.9 × 10-11). We identified 113 (10.7%) among 1,054 unrelated individuals in the cohort who carried heterozygous rare variants likely influencing the function of 17 genes. Thirteen of the 17 genes are associated with inborn errors of metabolism or other pediatric genetic conditions. This study extends the map of loci influencing the metabolome and highlights the importance of heterozygous rare variants in determining abnormal blood metabolic phenotypes in adults.

304 citations

Journal ArticleDOI
TL;DR: This work reports on the sequencing of 10,545 human genomes at 30×–40× coverage with an emphasis on quality metrics and novel variant and sequence discovery and concludes that high-coverage genome sequencing provides accurate detail on human variation for discovery and clinical applications.
Abstract: We report on the sequencing of 10,545 human genomes at 30×-40× coverage with an emphasis on quality metrics and novel variant and sequence discovery. We find that 84% of an individual human genome can be sequenced confidently. This high-confidence region includes 91.5% of exon sequence and 95.2% of known pathogenic variant positions. We present the distribution of over 150 million single-nucleotide variants in the coding and noncoding genome. Each newly sequenced genome contributes an average of 8,579 novel variants. In addition, each genome carries on average 0.7 Mb of sequence that is not found in the main build of the hg38 reference genome. The density of this catalog of variation allowed us to construct high-resolution profiles that define genomic sites that are highly intolerant of genetic variation. These results indicate that the data generated by deep genome sequencing is of the quality necessary for clinical use.

288 citations


Cited by
More filters
Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

Journal ArticleDOI
TL;DR: This Perspective has organized known cancer-associated metabolic changes into six hallmarks: deregulated uptake of glucose and amino acids, use of opportunistic modes of nutrient acquisition, useof glycolysis/TCA cycle intermediates for biosynthesis and NADPH production, increased demand for nitrogen, alterations in metabolite-driven gene regulation, and metabolic interactions with the microenvironment.

3,565 citations

Journal ArticleDOI
12 Oct 2017-Nature
TL;DR: It is found that local genetic variation affects gene expression levels for the majority of genes, and inter-chromosomal genetic effects for 93 genes and 112 loci are identified, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease.
Abstract: Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease.

3,289 citations

Journal ArticleDOI
TL;DR: Systems biology approaches, including array-based expression profiling, are poised to provide additional insights into this group of disorders, in which heterogeneity, both genetic and phenotypic, is emerging as a dominant theme.
Abstract: Autism is a heterogeneous syndrome defined by impairments in three core domains: social interaction, language and range of interests. Recent work has led to the identification of several autism susceptibility genes and an increased appreciation of the contribution of de novo and inherited copy number variation. Promising strategies are also being applied to identify common genetic risk variants. Systems biology approaches, including array-based expression profiling, are poised to provide additional insights into this group of disorders, in which heterogeneity, both genetic and phenotypic, is emerging as a dominant theme.

1,747 citations