scispace - formally typeset
Search or ask a question
Author

Chad Nusbaum

Bio: Chad Nusbaum is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Genome & Gene. The author has an hindex of 48, co-authored 69 publications receiving 62980 citations. Previous affiliations of Chad Nusbaum include Barts Health NHS Trust & Uniformed Services University of the Health Sciences.


Papers
More filters
Journal ArticleDOI
TL;DR: Chang et al. as mentioned in this paper developed a high-throughput Chromatin ImmunoPrecipitation (HT-ChIP) method to systematically map protein-DNA interactions to define the dynamics of DNA binding by 25 transcription factors and 4 chromatin marks at 4 time-points following pathogen stimulus of dendritic cells.

373 citations

Journal ArticleDOI
TL;DR: Naturally occurring dominant STAT‐C resistance mutations are common in treatment‐naïve patients infected with HCV genotype 1, and their influence on treatment outcome should be characterized to evaluate possible benefits of drug resistance testing for individual tailoring of drug combinations when treatment options are limited due to previous nonresponse to peginterferon and ribavirin.

355 citations

Journal ArticleDOI
TL;DR: A SNP detection method, with variants for low coverage, high coverage, and PCR amplicon applications, and evaluated it on known-truth data sets, and demonstrates good specificity in single reads, and excellent specificity in high-coverage data.
Abstract: Promising new sequencing technologies, based on sequencing-by-synthesis (SBS), are starting to deliver large amounts of DNA sequence at very low cost. Polymorphism detection is a key application. We describe general methods for improved quality scores and accurate automated polymorphism detection, and apply them to data from the Roche (454) Genome Sequencer 20. We assess our methods using known-truth data sets, which is critical to the validity of the assessments. We developed informative, base-by-base error predictors for this sequencer and used a variant of the phred binning algorithm to combine them into a single empirically derived quality score. These quality scores are more useful than those produced by the system software: They both better predict actual error rates and identify many more high-quality bases. We developed a SNP detection method, with variants for low coverage, high coverage, and PCR amplicon applications, and evaluated it on known-truth data sets. We demonstrate good specificity in single reads, and excellent specificity (no false positives in 215 kb of genome) in high-coverage data.

331 citations

Journal ArticleDOI
TL;DR: The striking difference in diversity between the German and French outbreak samples is consistent with several hypotheses, including a bottleneck that purged diversity in the German isolates, variation in mutation rates in the two E. coli outbreak populations, or uneven distribution of Diversity in the seed populations that led to each outbreak.
Abstract: The degree to which molecular epidemiology reveals information about the sources and transmission patterns of an outbreak depends on the resolution of the technology used and the samples studied. Isolates of Escherichia coli O104:H4 from the outbreak centered in Germany in May–July 2011, and the much smaller outbreak in southwest France in June 2011, were indistinguishable by standard tests. We report a molecular epidemiological analysis using multiplatform whole-genome sequencing and analysis of multiple isolates from the German and French outbreaks. Isolates from the German outbreak showed remarkably little diversity, with only two single nucleotide polymorphisms (SNPs) found in isolates from four individuals. Surprisingly, we found much greater diversity (19 SNPs) in isolates from seven individuals infected in the French outbreak. The German isolates form a clade within the more diverse French outbreak strains. Moreover, five isolates derived from a single infected individual from the French outbreak had extremely limited diversity. The striking difference in diversity between the German and French outbreak samples is consistent with several hypotheses, including a bottleneck that purged diversity in the German isolates, variation in mutation rates in the two E. coli outbreak populations, or uneven distribution of diversity in the seed populations that led to each outbreak.

279 citations

Journal ArticleDOI
TL;DR: It is proposed that the acquisition of these metazoan-specific developmental systems and the co-option of pre-existing genes drove the evolutionary transition from unicellular protists to metazoans.
Abstract: To reconstruct the evolutionary origin of multicellular animals from their unicellular ancestors, the genome sequences of diverse unicellular relatives are essential. However, only the genome of the choanoflagellate Monosiga brevicollis has been reported to date. Here we completely sequence the genome of the filasterean Capsaspora owczarzaki, the closest known unicellular relative of metazoans besides choanoflagellates. Analyses of this genome alter our understanding of the molecular complexity of metazoans’ unicellular ancestors showing that they had a richer repertoire of proteins involved in cell adhesion and transcriptional regulation than previously inferred only with the choanoflagellate genome. Some of these proteins were secondarily lost in choanoflagellates. In contrast, most intercellular signalling systems controlling development evolved later concomitant with the emergence of the first metazoans. We propose that the acquisition of these metazoan-specific developmental systems and the co-option of pre-existing genes drove the evolutionary transition from unicellular protists to metazoans. Unicellular ancestors of metazoans can provide significant insights into the origin of multicellularity. Suga et al. present the first complete genome of the filasterean Capsaspora owczarzakiand suggest an evolutionary mechanism for the transition from unicellular protists to metazoans.

256 citations


Cited by
More filters
Journal ArticleDOI
Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

22,269 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies.
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V−SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online (http://bioinf.spbau.ru/spades). It is distributed as open source software.

16,859 citations

Book ChapterDOI
TL;DR: This chapter assumes acquaintance with the principles and practice of PCR, as outlined in, for example, refs.
Abstract: 1. Introduction Designing PCR and sequencing primers are essential activities for molecular biologists around the world. This chapter assumes acquaintance with the principles and practice of PCR, as outlined in, for example, refs. 1–4. Primer3 is a computer program that suggests PCR primers for a variety of applications, for example to create STSs (sequence tagged sites) for radiation hybrid mapping (5), or to amplify sequences for single nucleotide polymor-phism discovery (6). Primer3 can also select single primers for sequencing reactions and can design oligonucleotide hybridization probes. In selecting oligos for primers or hybridization probes, Primer3 can consider many factors. These include oligo melting temperature, length, GC content , 3′ stability, estimated secondary structure, the likelihood of annealing to or amplifying undesirable sequences (for example interspersed repeats), the likelihood of primer–dimer formation between two copies of the same primer, and the accuracy of the source sequence. In the design of primer pairs Primer3 can consider product size and melting temperature, the likelihood of primer– dimer formation between the two primers in the pair, the difference between primer melting temperatures, and primer location relative to particular regions of interest or to be avoided.

16,407 citations

Journal ArticleDOI
TL;DR: The Trinity method for de novo assembly of full-length transcripts and evaluate it on samples from fission yeast, mouse and whitefly, whose reference genome is not yet available, providing a unified solution for transcriptome reconstruction in any sample.
Abstract: Massively parallel sequencing of cDNA has enabled deep and efficient probing of transcriptomes. Current approaches for transcript reconstruction from such data often rely on aligning reads to a reference genome, and are thus unsuitable for samples with a partial or missing reference genome. Here we present the Trinity method for de novo assembly of full-length transcripts and evaluate it on samples from fission yeast, mouse and whitefly, whose reference genome is not yet available. By efficiently constructing and analyzing sets of de Bruijn graphs, Trinity fully reconstructs a large fraction of transcripts, including alternatively spliced isoforms and transcripts from recently duplicated genes. Compared with other de novo transcriptome assemblers, Trinity recovers more full-length transcripts across a broad range of expression levels, with a sensitivity similar to methods that rely on genome alignments. Our approach provides a unified solution for transcriptome reconstruction in any sample, especially in the absence of a reference genome.

15,665 citations