scispace - formally typeset
Search or ask a question
Author

Chad Nusbaum

Bio: Chad Nusbaum is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Genome & Gene. The author has an hindex of 48, co-authored 69 publications receiving 62980 citations. Previous affiliations of Chad Nusbaum include Barts Health NHS Trust & Uniformed Services University of the Health Sciences.


Papers
More filters
Journal ArticleDOI
TL;DR: A robust protocol to acquire viable cells from cryopreserved synovial tissue with intact transcriptomes and cell surface phenotypes is established and integrated analysis of large patient cohorts may help define molecular heterogeneity within RA pathology and identify new therapeutic targets and biomarkers.
Abstract: Detailed molecular analyses of cells from rheumatoid arthritis (RA) synovium hold promise in identifying cellular phenotypes that drive tissue pathology and joint damage. The Accelerating Medicines Partnership RA/SLE Network aims to deconstruct autoimmune pathology by examining cells within target tissues through multiple high-dimensional assays. Robust standardized protocols need to be developed before cellular phenotypes at a single cell level can be effectively compared across patient samples. Multiple clinical sites collected cryopreserved synovial tissue fragments from arthroplasty and synovial biopsy in a 10% DMSO solution. Mechanical and enzymatic dissociation parameters were optimized for viable cell extraction and surface protein preservation for cell sorting and mass cytometry, as well as for reproducibility in RNA sequencing (RNA-seq). Cryopreserved synovial samples were collectively analyzed at a central processing site by a custom-designed and validated 35-marker mass cytometry panel. In parallel, each sample was flow sorted into fibroblast, T-cell, B-cell, and macrophage suspensions for bulk population RNA-seq and plate-based single-cell CEL-Seq2 RNA-seq. Upon dissociation, cryopreserved synovial tissue fragments yielded a high frequency of viable cells, comparable to samples undergoing immediate processing. Optimization of synovial tissue dissociation across six clinical collection sites with ~ 30 arthroplasty and ~ 20 biopsy samples yielded a consensus digestion protocol using 100 μg/ml of Liberase™ TL enzyme preparation. This protocol yielded immune and stromal cell lineages with preserved surface markers and minimized variability across replicate RNA-seq transcriptomes. Mass cytometry analysis of cells from cryopreserved synovium distinguished diverse fibroblast phenotypes, distinct populations of memory B cells and antibody-secreting cells, and multiple CD4+ and CD8+ T-cell activation states. Bulk RNA-seq of sorted cell populations demonstrated robust separation of synovial lymphocytes, fibroblasts, and macrophages. Single-cell RNA-seq produced transcriptomes of over 1000 genes/cell, including transcripts encoding characteristic lineage markers identified. We have established a robust protocol to acquire viable cells from cryopreserved synovial tissue with intact transcriptomes and cell surface phenotypes. A centralized pipeline to generate multiple high-dimensional analyses of synovial tissue samples collected across a collaborative network was developed. Integrated analysis of such datasets from large patient cohorts may help define molecular heterogeneity within RA pathology and identify new therapeutic targets and biomarkers.

85 citations

Posted ContentDOI
14 Mar 2019-bioRxiv
TL;DR: A reference atlas of SVs from deep whole-genome sequencing of 14,891 individuals across diverse global populations as a component of gnomAD is constructed, finding strong correlations between constraint against predicted loss-of-function (pLoF) SNVs and rare SVs that both disrupt and duplicate protein-coding genes.
Abstract: SUMMARY Structural variants (SVs) rearrange the linear and three-dimensional organization of the genome, which can have profound consequences in evolution, diversity, and disease. As national biobanks, human disease association studies, and clinical genetic testing are increasingly reliant on whole-genome sequencing, population references for small variants (i.e., SNVs & indels) in protein-coding genes, such as the Genome Aggregation Database (gnomAD), have become integral for the evaluation and interpretation of genomic variation. However, no comparable large-scale reference maps for SVs exist to date. Here, we constructed a reference atlas of SVs from deep whole-genome sequencing (WGS) of 14,891 individuals across diverse global populations (54% non-European) as a component of gnomAD. We discovered a rich landscape of 498,257 unique SVs, including 5,729 multi-breakpoint complex SVs across 13 mutational subclasses, and examples of localized chromosome shattering, like chromothripsis, in the general population. The mutation rates and densities of SVs were non-uniform across chromosomes and SV classes. We discovered strong correlations between constraint against predicted loss-of-function (pLoF) SNVs and rare SVs that both disrupt and duplicate protein-coding genes, suggesting that existing per-gene metrics of pLoF SNV constraint do not simply reflect haploinsufficiency, but appear to capture a gene’s general sensitivity to dosage alterations. The average genome in gnomAD-SV harbored 8,202 SVs, and approximately eight genes altered by rare SVs. When incorporating these data with pLoF SNVs, we estimate that SVs comprise at least 25% of all rare pLoF events per genome. We observed large (≥1Mb), rare SVs in 3.1% of genomes (∼1:32 individuals), and a clinically reportable pathogenic incidental finding from SVs in 0.24% of genomes (∼1:417 individuals). We also estimated the prevalence of previously reported pathogenic recurrent CNVs associated with genomic disorders, which highlighted differences in frequencies across populations and confirmed that WGS-based analyses can readily recapitulate these clinically important variants. In total, gnomAD-SV includes at least one CNV covering 57% of the genome, while the remaining 43% is significantly enriched for CNVs found in tumors and individuals with developmental disorders. However, current sample sizes remain markedly underpowered to establish estimates of SV constraint on the level of individual genes or noncoding loci. The gnomAD-SV resources have been integrated into the gnomAD browser (https://gnomad.broadinstitute.org), where users can freely explore this dataset without restrictions on reuse, which will have broad utility in population genetics, disease association, and diagnostic screening.

71 citations

Journal ArticleDOI
TL;DR: VAAL detected ∼98% of differences (including large insertion-deletions) between pairs of strains from three species while calling no false positives, identifying an antibiotic's site of action by identifying sequence differences between drug-sensitive strains and drug-resistant derivatives.
Abstract: This variant ascertainment algorithm, or VAAL, uses short sequence reads of haploid bacterial genomes to first locally assemble the reads and then compare these assemblies to the reference genome. This allows VAAL to detect all types of variants ranging from single-nucleotide polymorphisms to large insertions or deletions. Our variant ascertainment algorithm, VAAL, uses massively parallel DNA sequence data to identify differences between bacterial genomes with high sensitivity and specificity. VAAL detected ∼98% of differences (including large insertion-deletions) between pairs of strains from three species while calling no false positives. VAAL also pinpointed a single mutation between Vibrio cholerae genomes, identifying an antibiotic's site of action by identifying sequence differences between drug-sensitive strains and drug-resistant derivatives.

71 citations

Journal ArticleDOI
TL;DR: In this paper, internal transcribed spacer rDNA sequences from both curated sporocarp collections and soil polymerase chain reaction clone libraries sampled in the arctic tundra and boreal forests of Alaska were analyzed.
Abstract: Despite the critical roles fungi play in the functioning of ecosystems, especially as symbionts of plants and recyclers of organic matter, their biodiversity is poorly known in high-latitude regions. In this paper, we discuss the molecular diversity of one of the most diverse and abundant groups of ectomycorrhizal fungi: the genus Lactarius Pers. We analysed internal transcribed spacer rDNA sequences from both curated sporocarp collections and soil polymerase chain reaction clone libraries sampled in the arctic tundra and boreal forests of Alaska. Our genetic diversity assessment, based on various phylogenetic methods and operational taxonomic unit (OTU) delimitations, suggests that the genus Lactarius is diverse in Alaska, with at least 43 putative phylogroups, and 24 and 38 distinct OTUs based on 95% and 97% internal transcribed spacer sequence similarity, respectively. Some OTUs were identified to known species, while others were novel, previously unsequenced groups. Nonasymptotic species accumulation curves, the disparity between observed and estimated richness, and the high number of singleton OTUs indicated that many Lactarius species remain to be found and identified in Alaska. Many Lactarius taxa show strong habitat preference to one of the three major vegetation types in the sampled regions (arctic tundra, black spruce forests, and mixed birch-aspen-white spruce forests), as supported by statistical tests of UniFrac distances and principal coordinates analyses (PCoA). Together, our data robustly demonstrate great diversity and nonrandom ecological partitioning in an important boreal ectomycorrhizal genus within a relatively small geographical region. The observed diversity of Lactarius was much higher in either type of boreal forest than in the arctic tundra, supporting the widely recognized pattern of decreasing species richness with increasing latitude.

65 citations

Journal ArticleDOI
TL;DR: A primer‐tagging approach that allows pooling and subsequent sorting of numerous samples, which is directed to amplification of a region spanning the nuclear ribosomal internal transcribed spacers and partial large subunit from fungi in environmental samples, suggests that the pig‐tagged primers can be used to increase ecological inference in high throughput sequencing projects on fungi.
Abstract: High throughput sequencing methods are widely used in analyses of microbial diversity, but are generally applied to small numbers of samples, which precludes characterization of patterns of microbial diversity across space and time. We have designed a primer-tagging approach that allows pooling and subsequent sorting of numerous samples, which is directed to amplification of a region spanning the nuclear ribosomal internal transcribed spacers and partial large subunit from fungi in environmental samples. To test the method for phylogenetic biases, we constructed a controlled mixture of four taxa representing the Chytridiomycota, Zygomycota, Ascomycota and Basidiomycota. Following cloning and colony restriction fragment length polymorphism analysis, we found no significant difference in representation in 19 of the 23 tested primers. We also generated a clone library from two soil DNA extracts using two primers for each extract and compared 456 clone sequences. Community diversity statistics and contingency table tests applied to counts of operational taxonomic units revealed that the two DNA extracts differed significantly, while the pairs of tagged primers from each extract were indistinguishable. Similar results were obtained using UniFrac phylogenetic comparisons. Together, these results suggest that the pig-tagged primers can be used to increase ecological inference in high throughput sequencing projects on fungi.

63 citations


Cited by
More filters
Journal ArticleDOI
Eric S. Lander1, Lauren Linton1, Bruce W. Birren1, Chad Nusbaum1  +245 moreInstitutions (29)
15 Feb 2001-Nature
TL;DR: The results of an international collaboration to produce and make freely available a draft sequence of the human genome are reported and an initial analysis is presented, describing some of the insights that can be gleaned from the sequence.
Abstract: The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

22,269 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies.
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V−SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online (http://bioinf.spbau.ru/spades). It is distributed as open source software.

16,859 citations

Book ChapterDOI
TL;DR: This chapter assumes acquaintance with the principles and practice of PCR, as outlined in, for example, refs.
Abstract: 1. Introduction Designing PCR and sequencing primers are essential activities for molecular biologists around the world. This chapter assumes acquaintance with the principles and practice of PCR, as outlined in, for example, refs. 1–4. Primer3 is a computer program that suggests PCR primers for a variety of applications, for example to create STSs (sequence tagged sites) for radiation hybrid mapping (5), or to amplify sequences for single nucleotide polymor-phism discovery (6). Primer3 can also select single primers for sequencing reactions and can design oligonucleotide hybridization probes. In selecting oligos for primers or hybridization probes, Primer3 can consider many factors. These include oligo melting temperature, length, GC content , 3′ stability, estimated secondary structure, the likelihood of annealing to or amplifying undesirable sequences (for example interspersed repeats), the likelihood of primer–dimer formation between two copies of the same primer, and the accuracy of the source sequence. In the design of primer pairs Primer3 can consider product size and melting temperature, the likelihood of primer– dimer formation between the two primers in the pair, the difference between primer melting temperatures, and primer location relative to particular regions of interest or to be avoided.

16,407 citations

Journal ArticleDOI
TL;DR: The Trinity method for de novo assembly of full-length transcripts and evaluate it on samples from fission yeast, mouse and whitefly, whose reference genome is not yet available, providing a unified solution for transcriptome reconstruction in any sample.
Abstract: Massively parallel sequencing of cDNA has enabled deep and efficient probing of transcriptomes. Current approaches for transcript reconstruction from such data often rely on aligning reads to a reference genome, and are thus unsuitable for samples with a partial or missing reference genome. Here we present the Trinity method for de novo assembly of full-length transcripts and evaluate it on samples from fission yeast, mouse and whitefly, whose reference genome is not yet available. By efficiently constructing and analyzing sets of de Bruijn graphs, Trinity fully reconstructs a large fraction of transcripts, including alternatively spliced isoforms and transcripts from recently duplicated genes. Compared with other de novo transcriptome assemblers, Trinity recovers more full-length transcripts across a broad range of expression levels, with a sensitivity similar to methods that rely on genome alignments. Our approach provides a unified solution for transcriptome reconstruction in any sample, especially in the absence of a reference genome.

15,665 citations