scispace - formally typeset
Search or ask a question
Author

Chan Beum Park

Bio: Chan Beum Park is an academic researcher from KAIST. The author has contributed to research in topics: Artificial photosynthesis & Amyloid. The author has an hindex of 60, co-authored 212 publications receiving 12126 citations. Previous affiliations of Chan Beum Park include Korea Research Institute of Bioscience and Biotechnology & Pohang University of Science and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: Graphene-TiO(2) nanoparticles possess excellent photocatalytic properties under visible light for the degradation of methylene blue and a red-shift of the band-edge and a significant reduction of theBandgap.
Abstract: Highly photoactive, graphene-wrapped anatase TiO(2) nanoparticles are synthesized through one-step hydrothermal reduction of graphene oxide (GO) and TiO(2) crystallization from GO-wrapped amorphous TiO(2) NPs. Graphene-TiO(2) nanoparticles exhibit a red-shift of the band-edge and a significant reduction of the bandgap (2.80 eV). Graphene-TiO(2) nanoparticles possess excellent photocatalytic properties under visible light for the degradation of methylene blue.

863 citations

Journal ArticleDOI
TL;DR: A universal biomineralization route, called polydopamine‐assisted hydroxyapatite formation (pHAF), that can be applied to virtually any type and morphology of scaffold materials is demonstrated and can be an innovative foundation for future tissue engineering.
Abstract: Bone tissue is a complex biocomposite material with a variety of organic (e.g., proteins, cells) and inorganic (e.g., hydroxyapatite crystals) components hierarchically organized with nano/microscale precision. Based on the understanding of such hierarchical organization of bone tissue and its unique mechanical properties, efforts are being made to mimic these organic–inorganic hybrid biocomposites. A key factor for the successful designing of complex, hybrid biomaterials is the facilitation and control of adhesion at the interfaces, as many current synthetic biomaterials are inert, lacking interfacial bioactivity. In this regard, researchers have focused on controlling the interface by surface modifications, but the development of a simple, unified way to biofunctionalize diverse organic and inorganic materials remains a critical challenge. Here, a universal biomineralization route, called polydopamine-assisted hydroxyapatite formation (pHAF), that can be applied to virtually any type and morphology of scaffold materials is demonstrated. Inspired by the adhesion mechanism of mussels, the pHAF method can readily integrate hydroxyapatites on ceramics, noble metals, semiconductors, and synthetic polymers, irrespective of their size and morphology (e.g., porosity and shape). Surface-anchored catecholamine moieties in polydopamine enriches the interface with calcium ions, facilitating the formation of hydroxyapatite crystals that are aligned to the c-axes, parallel to the polydopamine layer as observed in natural hydroxyapatites in mineralized tissues. This universal surface biomineralization can be an innovative foundation for future tissue engineering.

672 citations

Journal ArticleDOI
Sook Hee Ku1, Jungki Ryu1, Seonki Hong1, Haeshin Lee1, Chan Beum Park1 
TL;DR: It is found that the poly(dopamine) coating can promote cell adhesion on any type of material surfaces including the well-known anti-adhesive substrate, poly(tetrafluoroethylene).

619 citations

Journal ArticleDOI
Sook Hee Ku1, Chan Beum Park1
TL;DR: The development of a nanofibrous scaffold that has a polymeric core and a shell mimicking mussel adhesive for enhanced attachment, proliferation, and phenotypic maintenance of human endothelial cells is reported.

359 citations

Journal ArticleDOI
TL;DR: Basic concepts and new findings related to pressure effects on intra- and intermolecular interactions within proteins and protein complexes are summarized, and their implications for protein structure-function relationships under pressure are discussed.

330 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The notion of sustainability is introduced through discussion of the energy and environmental costs of state-of-the-art lithium-ion batteries, considering elemental abundance, toxicity, synthetic methods and scalability.
Abstract: Energy storage using batteries offers a solution to the intermittent nature of energy production from renewable sources; however, such technology must be sustainable. This Review discusses battery development from a sustainability perspective, considering the energy and environmental costs of state-of-the-art Li-ion batteries and the design of new systems beyond Li-ion. Images: batteries, car, globe: © iStock/Thinkstock.

5,271 citations

Journal ArticleDOI
TL;DR: An overview of the basic photophysics and electron transfer theory is presented in order to provide a comprehensive guide for employing this class of catalysts in photoredox manifolds.
Abstract: In this review, we highlight the use of organic photoredox catalysts in a myriad of synthetic transformations with a range of applications. This overview is arranged by catalyst class where the photophysics and electrochemical characteristics of each is discussed to underscore the differences and advantages to each type of single electron redox agent. We highlight both net reductive and oxidative as well as redox neutral transformations that can be accomplished using purely organic photoredox-active catalysts. An overview of the basic photophysics and electron transfer theory is presented in order to provide a comprehensive guide for employing this class of catalysts in photoredox manifolds.

3,550 citations

Journal ArticleDOI
TL;DR: The common design motifs of a range of natural structural materials are reviewed, and the difficulties associated with the design and fabrication of synthetic structures that mimic the structural and mechanical characteristics of their natural counterparts are discussed.
Abstract: Natural structural materials are built at ambient temperature from a fairly limited selection of components. They usually comprise hard and soft phases arranged in complex hierarchical architectures, with characteristic dimensions spanning from the nanoscale to the macroscale. The resulting materials are lightweight and often display unique combinations of strength and toughness, but have proven difficult to mimic synthetically. Here, we review the common design motifs of a range of natural structural materials, and discuss the difficulties associated with the design and fabrication of synthetic structures that mimic the structural and mechanical characteristics of their natural counterparts.

3,083 citations

01 Dec 1991
TL;DR: In this article, self-assembly is defined as the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds.
Abstract: Molecular self-assembly is the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds. Molecular self-assembly is ubiquitous in biological systems and underlies the formation of a wide variety of complex biological structures. Understanding self-assembly and the associated noncovalent interactions that connect complementary interacting molecular surfaces in biological aggregates is a central concern in structural biochemistry. Self-assembly is also emerging as a new strategy in chemical synthesis, with the potential of generating nonbiological structures with dimensions of 1 to 10(2) nanometers (with molecular weights of 10(4) to 10(10) daltons). Structures in the upper part of this range of sizes are presently inaccessible through chemical synthesis, and the ability to prepare them would open a route to structures comparable in size (and perhaps complementary in function) to those that can be prepared by microlithography and other techniques of microfabrication.

2,591 citations