scispace - formally typeset
Search or ask a question
Author

Chandan Pandey

Bio: Chandan Pandey is an academic researcher from Indian Institute of Technology, Jodhpur. The author has contributed to research in topics: Welding & Microstructure. The author has an hindex of 27, co-authored 114 publications receiving 2091 citations. Previous affiliations of Chandan Pandey include Indian Institutes of Technology & Indian Institute of Technology Roorkee.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the evolution of phases in modified 9Cr-1Mo P91 steel and their effects on microstructural stability and mechanical properties have been studied for specimens that were subjected to different thermal heat treatment conditions.
Abstract: To achieve high thermal efficiency, modern day thermal power plants operate at higher operating temperature and pressure which necessitates use of steels with high creep rupture strength such as modified 9Cr-1Mo steels. In the present study, the evolution of phases in modified 9Cr-1Mo P91 steel and their effects on microstructural stability and mechanical properties have been studied for specimens that were subjected to different thermal heat treatment conditions. The main focus has been to study the effect of heat treatment temperature ranging from 623 K to 1033 K (350–760 °C) on P91 steel. Further, the effect of furnace cooling, water quenching, tempering at 1273 K (1000 °C) and austenitizing on the mechanical properties and microstructure has been studied. The techniques used for material characterization were scanning electron microscopy (SEM), optical microscopy (OM) and X-ray diffraction. For low tempering temperature, i.e. 623 K (350 °C), M 23 C 6 , M 3 C, M 7 C 3, and MX precipitates have been observed with high yield strength (YS), tensile strength (UTS), hardness and low toughness. In the high temperature range, 923–1033 K (650–760 °C), fine MX, M 7 C 3 , M 23 C 6 , M 2 X, and M 3 C precipitates have been observed with low YS, UTS, hardness and high toughness. The steel tempered at 1033 K (760 °C) was observed to be having best combination of YS, UTS, hardness, toughness and ductility.

160 citations

Journal ArticleDOI
TL;DR: In this article, microstructure evolution in P91 steel and their weldments are reviewed in as-virgin and heat treatment and creep exposure condition, and the role of grain coarsening, Cr/Fe ratio, lath widening and dislocation density on creep rupture life of base metal and weldments is discussed.

155 citations

Journal ArticleDOI
TL;DR: In this paper, the fracture surface of cast and forged (C&F) modified 9Cr-1Mo (P91) steels, which are subjected to different heat treatment regimes, was analyzed by using the field-emission scanning electron microscope (FE-SEM).

133 citations

Journal ArticleDOI
TL;DR: In this paper, the microstructure and mechanical behavior of the dissimilar welded joint (DWJ) between ferritic-martensitic steel and austenitic grade steel along with its application have been summarized in Ultra Super Critical (USC) power plant.

126 citations

Journal ArticleDOI
TL;DR: In this article, a review of the thermal spraying techniques and current advancements in materials, mechanical properties, understand the high temperature performance, residual stress in the coating, understanding the failure mechanisms and life prediction models for coatings is presented.
Abstract: Thermal barrier coatings (TBCs) have seen considerable advancement since the initial testing and development of thermal spray coating. Thermal barrier coatings are currently been utilized in various engineering areas which include internal combustion engines, gas turbine blades of jet engines, pyrochemical reprocessing units and many more. The development of new materials, deposition techniques is targeted at improving the life of the underlying substrate. Hence, the performance of the coating plays a vital role in improving the life of substrate. The scope for advancement in thermal barrier coatings is very high and continuous efforts are being made to produce improved and durable coatings. Thermal barrier coatings have the potential to address long term and short-term problems in gas turbine, internal combustion and power generation industry. The study of thermal barrier coating material, performance and life estimation is a critical factor that should be understood to introduce any advancement. The present review gives an overview of the thermal spraying techniques and current advancements in materials, mechanical properties, understanding the high temperature performance, residual stress in the coating, understanding the failure mechanisms and life prediction models for coatings.

115 citations


Cited by
More filters
01 Jan 1987

991 citations

Journal ArticleDOI
TL;DR: In this article, the authors deal with HE definition, mechanisms which causes HE, subcritical crack growth, the concentration of hydrogen measurement and prevention activities are discussed which act as a barrier for hydrogen diffusion.

308 citations

Journal ArticleDOI
TL;DR: In this paper, the evolution of phases in modified 9Cr-1Mo P91 steel and their effects on microstructural stability and mechanical properties have been studied for specimens that were subjected to different thermal heat treatment conditions.
Abstract: To achieve high thermal efficiency, modern day thermal power plants operate at higher operating temperature and pressure which necessitates use of steels with high creep rupture strength such as modified 9Cr-1Mo steels. In the present study, the evolution of phases in modified 9Cr-1Mo P91 steel and their effects on microstructural stability and mechanical properties have been studied for specimens that were subjected to different thermal heat treatment conditions. The main focus has been to study the effect of heat treatment temperature ranging from 623 K to 1033 K (350–760 °C) on P91 steel. Further, the effect of furnace cooling, water quenching, tempering at 1273 K (1000 °C) and austenitizing on the mechanical properties and microstructure has been studied. The techniques used for material characterization were scanning electron microscopy (SEM), optical microscopy (OM) and X-ray diffraction. For low tempering temperature, i.e. 623 K (350 °C), M 23 C 6 , M 3 C, M 7 C 3, and MX precipitates have been observed with high yield strength (YS), tensile strength (UTS), hardness and low toughness. In the high temperature range, 923–1033 K (650–760 °C), fine MX, M 7 C 3 , M 23 C 6 , M 2 X, and M 3 C precipitates have been observed with low YS, UTS, hardness and high toughness. The steel tempered at 1033 K (760 °C) was observed to be having best combination of YS, UTS, hardness, toughness and ductility.

160 citations

Journal ArticleDOI
TL;DR: A comprehensive review of state-of-the-art researches on NESs, highlighting possible complex dynamics resulting in a NES coupled to a structure and suggesting further promising directions, such as NESs for multidirectional vibration reduction, NESs with nonlinearities beyond the cubic, and potential deterioration caused by a NES.
Abstract: Nonlinear energy sink (NES) is an appropriately designed nonlinear oscillator without positive linear stiffness. NES can suppress vibrations over a wide frequency range due to its targeted energy transfer characteristics. Thus, investigations on NES have attracted a lot of attention since a NES was proposed. Designs, analysis, and applications of NESs are still active since different configurations are needed in various practical circumstances. The present work provides a comprehensive review of state-of-the-art researches on NESs. The work begins with a survey of the generation of a NES and its important vibration control characteristics. The work highlights possible complex dynamics resulting in a NES coupled to a structure. The work also summarizes some significant design on the implements of optimal damping effects and the offsets of NES shortcomings. Then, the work details the applications of NESs in all engineering fields. The concluding remarks suggest further promising directions, such as NESs for multidirectional vibration reduction, NESs with nonlinearities beyond the cubic, potential deterioration caused by a NES, low-cost NESs, NESs for extremely low frequency range, and NESs integrated into active vibration controls. There are 383 references in the review, including some publications of the authors.

157 citations

Journal ArticleDOI
TL;DR: In this article, microstructure evolution in P91 steel and their weldments are reviewed in as-virgin and heat treatment and creep exposure condition, and the role of grain coarsening, Cr/Fe ratio, lath widening and dislocation density on creep rupture life of base metal and weldments is discussed.

155 citations