scispace - formally typeset
Search or ask a question
Author

Chandra Mouli

Other affiliations: Aptina
Bio: Chandra Mouli is an academic researcher from Micron Technology. The author has contributed to research in topics: Transistor & Field-effect transistor. The author has an hindex of 32, co-authored 216 publications receiving 3289 citations. Previous affiliations of Chandra Mouli include Aptina.


Papers
More filters
Patent
Chandra Mouli1
17 Dec 2012
TL;DR: In this paper, the authors describe memory cells that contain floating bodies and gated diodes, where the floating bodies may be adjacent channel regions, and spaced from the channel regions by a dielectric structure.
Abstract: Some embodiments include memory cells that contain floating bodies and diodes. The diodes may be gated diodes having sections doped to a same conductivity type as the floating bodies, and such sections of the gated diodes may be electrically connected to the floating bodies. The floating bodies may be adjacent channel regions, and spaced from the channel regions by a dielectric structure. The dielectric structure of a memory cell may have a first portion between the floating body and the diode, and may have a second portion between the floating body and the channel region. The first portion may be more leaky to charge carriers than the second portion. The diodes may be formed in semiconductor material that is different from a semiconductor material that the channel regions are in. The floating bodies may have bulbous lower regions. Some embodiments include methods of making memory cells.
Journal ArticleDOI
TL;DR: In this article, the transient behavior of the NAND-type nanodot flash cell has been studied for the first time using an equivalent circuit model, and the transient current through each layer in the dielectric stack can be monitored during the pulse programming/erasing.
Abstract: The programming/erasing transient behavior of the NAND-type nanodot flash cell has been studied for the first time. By using an equivalent circuit model, the transient current through each layer in the dielectric stack can be monitored during the pulse programming/erasing. It is found that the oxide charging current leads the tunneling current during programming, and the charge built up at the storage node causes the gradual leakage current increase in the blocking dielectric. Parameters such as the current ratio of the tunnel oxide and the blocking layer and the programming efficiency of the nanodot cell can be calculated. The simulation result has been verified by the time-resolved current measurement.
Patent
11 Mar 1999
TL;DR: In this article, the first and second resistive elements form a voltage divider which is configured to selectively change threshold voltages of the field effect transistor with state changes in the gate voltage.
Abstract: Methods of forming field effect transistors and resultant field effect transistor circuitry are described. In one embodiment, a semiconductive substrate includes a field effect transistor having a body. A first resistive element is received by the substrate and connected between the transistor's gate and the body. A second resistive element is received by the substrate and connected between the body and a reference voltage node. The first and second resistive elements form a voltage divider which is configured to selectively change threshold voltages of the field effect transistor with state changes in the gate voltage. In a preferred embodiment, first and second diode assemblies are positioned over the substrate and connected between the gate and body, and the body and a reference voltage node to provide the voltage divider.
Patent
10 Apr 2018
TL;DR: In this paper, an integrated structure having vertically-stacked conductive levels is proposed, where the channel material extends along the memory cell levels and the select device level, and extends into the conductively-doped semiconductor material.
Abstract: Some embodiments include an integrated structure having vertically-stacked conductive levels. Upper conductive levels are memory cell levels, and a lower conductive level is a select device level. Conductively-doped semiconductor material is under the select device level. Channel material extends along the memory cell levels and the select device level, and extends into the conductively-doped semiconductor material. A region of the channel material that extends into the conductively-doped semiconductor material is a lower region of the channel material and has a vertical sidewall. Tunneling material, charge-storage material and charge-blocking material extend along the channel material and are between the channel material and the conductive levels. The tunneling material, charge-storage material and charge-blocking material are not along at least a portion of the vertical sidewall of the lower region of the channel material, and the conductively-doped semiconductor material is directly against such portion. Some embodiments include methods of forming integrated structures.
Patent
Chandra Mouli1
31 Jul 2014
TL;DR: In this paper, a memory includes a first memory cell and a second memory cell formed over the first cell, each of which includes a channel region comprising silicon and carbon, a control gate, and a dielectric stack between the channel region and the control gate.
Abstract: A memory includes a first memory cell and a second memory cell formed over the first memory cell. Each of the first memory cell and the second memory cell includes a channel region comprising silicon and carbon, a control gate, and a dielectric stack between the channel region and the control gate. A carbon content of the channel region of the second memory cell is less than a carbon content of the channel region of the first memory cell.

Cited by
More filters
Patent
01 Aug 2008
TL;DR: In this article, the oxide semiconductor film has at least a crystallized region in a channel region, which is defined as a region of interest (ROI) for a semiconductor device.
Abstract: An object is to provide a semiconductor device of which a manufacturing process is not complicated and by which cost can be suppressed, by forming a thin film transistor using an oxide semiconductor film typified by zinc oxide, and a manufacturing method thereof. For the semiconductor device, a gate electrode is formed over a substrate; a gate insulating film is formed covering the gate electrode; an oxide semiconductor film is formed over the gate insulating film; and a first conductive film and a second conductive film are formed over the oxide semiconductor film. The oxide semiconductor film has at least a crystallized region in a channel region.

1,501 citations

Journal ArticleDOI
TL;DR: A signal-dependent noise model, which gives the pointwise standard-deviation of the noise as a function of the expectation of the pixel raw-data output, is composed of a Poissonian part, modeling the photon sensing, and Gaussian part, for the remaining stationary disturbances in the output data.
Abstract: We present a simple and usable noise model for the raw-data of digital imaging sensors This signal-dependent noise model, which gives the pointwise standard-deviation of the noise as a function of the expectation of the pixel raw-data output, is composed of a Poissonian part, modeling the photon sensing, and Gaussian part, for the remaining stationary disturbances in the output data We further explicitly take into account the clipping of the data (over- and under-exposure), faithfully reproducing the nonlinear response of the sensor We propose an algorithm for the fully automatic estimation of the model parameters given a single noisy image Experiments with synthetic images and with real raw-data from various sensors prove the practical applicability of the method and the accuracy of the proposed model

789 citations

Patent
01 Sep 2006
TL;DR: In this paper, a time-dependent algorithmic compensation function is applied to data output from a continuous analyte sensor to determine a time since sensor implantation and/or whether a newly initialized sensor has been used previously.
Abstract: Systems and methods for applying time-dependent algorithmic compensation functions to data output from a continuous analyte sensor. Some embodiments determine a time since sensor implantation and/or whether a newly initialized sensor has been used previously.

690 citations

Journal Article
TL;DR: A small camera device called Cyclops is developed that bridges the gap between the computationally constrained wireless sensor nodes such as Motes, and CMOS imagers which, while low power and inexpensive, are nevertheless designed to mate with resource-rich hosts.
Abstract: Despite their increasing sophistication, wireless sensor networks still do not exploit the most powerful of the human senses: vision. Indeed, vision provides humans with unmatched capabilities to distinguish objects and identify their importance. Our work seeks to provide sensor networks with similar capabilities by exploiting emerging, cheap, low-power and small form factor CMOS imaging technology. In fact, we can go beyond the stereo capabilities of human vision, and exploit the large scale of sensor networks to provide multiple, widely different perspectives of the physical phenomena. To this end, we have developed a small camera device called Cyclops that bridges the gap between the computationally constrained wireless sensor nodes such as Motes, and CMOS imagers which, while low power and inexpensive, are nevertheless designed to mate with resource-rich hosts. Cyclops enables development of new class of vision applications that span across wireless sensor network. We describe our hardware and software architecture, its temporal and power characteristics and present some representative applications.

514 citations

Proceedings ArticleDOI
02 Nov 2005
TL;DR: Cyclops as discussed by the authors is a small camera device that bridges the gap between the computationally constrained wireless sensor nodes such as Motes, and CMOS imagers which, while low power and inexpensive, are nevertheless designed to mate with resource-rich hosts.
Abstract: Despite their increasing sophistication, wireless sensor networks still do not exploit the most powerful of the human senses: vision. Indeed, vision provides humans with unmatched capabilities to distinguish objects and identify their importance. Our work seeks to provide sensor networks with similar capabilities by exploiting emerging, cheap, low-power and small form factor CMOS imaging technology. In fact, we can go beyond the stereo capabilities of human vision, and exploit the large scale of sensor networks to provide multiple, widely different perspectives of the physical phenomena.To this end, we have developed a small camera device called Cyclops that bridges the gap between the computationally constrained wireless sensor nodes such as Motes, and CMOS imagers which, while low power and inexpensive, are nevertheless designed to mate with resource-rich hosts. Cyclops enables development of new class of vision applications that span across wireless sensor network. We describe our hardware and software architecture, its temporal and power characteristics and present some representative applications.

489 citations