scispace - formally typeset
Search or ask a question
Author

Changju Yang

Bio: Changju Yang is an academic researcher from Chonbuk National University. The author has contributed to research in topics: Memristor & Memistor. The author has an hindex of 16, co-authored 49 publications receiving 1780 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The hardware and spice simulation of the proposed emulator showed promising results that provides an alternative solution of hp TiO2 memristor model in real circuit.
Abstract: A memristor emulator which imitates the behavior of a TiO2 memristor is presented. Our emulator is built from off-the-shelf solid state components. To develop real world memristor circuit applications, the emulator can be used for breadboard experiments in real time. Two or more memristor emulators can be connected in serial, in parallel, or in hybrid (serial and parallel combined) with identical or opposite polarities. With a simple change of connection, each memristor emulator can be switched between a decremental configuration or an incremental configuration. The hardware and spice simulation of the proposed emulator showed promising results that provides an alternative solution of hp TiO2 memristor model in real circuit.

351 citations

Journal ArticleDOI
TL;DR: A pulse-based programmable memristor circuit for implementing synaptic weights for artificial neural networks is proposed, and both positive and negative multiplications are performed via a charge-dependent Ohm's law.
Abstract: A pulse-based programmable memristor circuit for implementing synaptic weights for artificial neural networks is proposed. In the memristor weighting circuit, both positive and negative multiplications are performed via a charge-dependent Ohm's law (). The circuit is composed of five memristors with bridge-like connections and operates like an artificial synapse with pulse-based processing and adjustability. The sign switching pulses, weight setting pulses and synaptic processing pulses are applied through a shared input terminal. Simulations are done with both linear memristor and window-based nonlinear memristor models.

324 citations

Journal ArticleDOI
TL;DR: The use of memristor bridge synapse in the proposed architecture solves one of the major problems, regarding nonvolatile weight storage in analog neural network implementations, and a modified chip-in-the-loop learning scheme suitable for the proposed neural network architecture is proposed.
Abstract: Analog hardware architecture of a memristor bridge synapse-based multilayer neural network and its learning scheme is proposed. The use of memristor bridge synapse in the proposed architecture solves one of the major problems, regarding nonvolatile weight storage in analog neural network implementations. To compensate for the spatial nonuniformity and nonideal response of the memristor bridge synapse, a modified chip-in-the-loop learning scheme suitable for the proposed neural network architecture is also proposed. In the proposed method, the initial learning is conducted in software, and the behavior of the software-trained network is learned by the hardware network by learning each of the single-layered neurons of the network independently. The forward calculation of the single-layered neuron learning is implemented on circuit hardware, and followed by a weight updating phase assisted by a host computer. Unlike conventional chip-in-the-loop learning, the need for the readout of synaptic weights for calculating weight updates in each epoch is eliminated by virtue of the memristor bridge synapse and the proposed learning scheme. The hardware architecture along with the successful implementation of proposed learning on a three-bit parity network, and on a car detection network is also presented.

314 citations

Journal ArticleDOI
01 Jun 2012
TL;DR: This paper proposes a memristor bridge circuit consisting of four identical memristors that is able to perform zero, negative, and positive synaptic weightings together with three additional transistors to perform synaptic operation for neural cells.
Abstract: In this paper, we propose a memristor bridge circuit consisting of four identical memristors that is able to perform zero, negative, and positive synaptic weightings. Together with three additional transistors, the memristor bridge weighting circuit is able to perform synaptic operation for neural cells. It is compact as both weighting and weight programming are performed in a memristor bridge synapse. It is power efficient, since the operation is based on pulsed input signals. Its input terminals are utilized commonly for applying both weight programming and weight processing signals via time sharing. In this paper, features of the memristor bridge synapses are investigated using the TiO memristor model via simulations.

251 citations

Journal ArticleDOI
TL;DR: It is shown that a circuit-based learning using RWC is two orders faster than its software counterpart, which is a first of its kind demonstrating successful circuit- based learning for multilayer neural network built with memristors.
Abstract: Memristor-based circuit architecture for multilayer neural networks is proposed. It is a first of its kind demonstrating successful circuit-based learning for multilayer neural network built with memristors. Though back-propagation algorithm is a powerful learning scheme for multilayer neural networks, its hardware implementation is very difficult due to complexities of the neural synapses and the operations involved in the learning algorithm. In this paper, the circuit of a multilayer neural network is designed with memristor bridge synapses and the learning is realized with a simple learning algorithm called Random Weight Change (RWC). Though RWC algorithm requires more iterations than back-propagation algorithm, we show that a circuit-based learning using RWC is two orders faster than its software counterpart. The method to build a multilayer neural network using memristor bridge synapses and a circuit-based learning architecture of RWC algorithm is proposed. Comparison between software-based and memristor circuit-based learning are presented via simulations.

140 citations


Cited by
More filters
Book ChapterDOI
11 Dec 2012

1,704 citations

Journal ArticleDOI
02 Jan 2017
TL;DR: The relevant virtues and limitations of these devices are assessed, in terms of properties such as conductance dynamic range, (non)linearity and (a)symmetry of conductance response, retention, endurance, required switching power, and device variability.
Abstract: Dense crossbar arrays of non-volatile memory (NVM) devices represent one possible path for implementing massively-parallel and highly energy-efficient neuromorphic computing systems. We first revie...

800 citations

Journal ArticleDOI
Y.L. Kuo1, M.L. Liou
01 Jun 1977
TL;DR: One of the books that can be recommended for new readers is computer aided analysis of electronic circuits algorithms and computational techniques, which is not kind of difficult book to read.
Abstract: Preparing the books to read every day is enjoyable for many people. However, there are still many people who also don't like reading. This is a problem. But, when you can support others to start reading, it will be better. One of the books that can be recommended for new readers is computer aided analysis of electronic circuits algorithms and computational techniques. This book is not kind of difficult book to read. It can be read and understand by the new readers.

621 citations

Posted Content
TL;DR: An exhaustive review of the research conducted in neuromorphic computing since the inception of the term is provided to motivate further work by illuminating gaps in the field where new research is needed.
Abstract: Neuromorphic computing has come to refer to a variety of brain-inspired computers, devices, and models that contrast the pervasive von Neumann computer architecture This biologically inspired approach has created highly connected synthetic neurons and synapses that can be used to model neuroscience theories as well as solve challenging machine learning problems The promise of the technology is to create a brain-like ability to learn and adapt, but the technical challenges are significant, starting with an accurate neuroscience model of how the brain works, to finding materials and engineering breakthroughs to build devices to support these models, to creating a programming framework so the systems can learn, to creating applications with brain-like capabilities In this work, we provide a comprehensive survey of the research and motivations for neuromorphic computing over its history We begin with a 35-year review of the motivations and drivers of neuromorphic computing, then look at the major research areas of the field, which we define as neuro-inspired models, algorithms and learning approaches, hardware and devices, supporting systems, and finally applications We conclude with a broad discussion on the major research topics that need to be addressed in the coming years to see the promise of neuromorphic computing fulfilled The goals of this work are to provide an exhaustive review of the research conducted in neuromorphic computing since the inception of the term, and to motivate further work by illuminating gaps in the field where new research is needed

570 citations

Journal ArticleDOI
TL;DR: In this paper, the first four elementary nonlinear 2-terminal circuit elements, namely, the resistor, the capacitor, the inductor, and the memristor, are given a circuit-theoretic foundation.
Abstract: This chapter consists of two parts. Part I gives a circuit-theoretic foundation for the first four elementary nonlinear 2-terminal circuit elements, namely, the resistor, the capacitor, the inductor, and the memristor. Part II consists of a collection of colorful “Vignettes” with carefully articulated text and colorful illustrations of the rudiments of the memristor and its characteristic fingerprints and signatures. It is intended as a self-contained pedagogical primer for beginners who have not heard of memristors before.

425 citations