scispace - formally typeset
Search or ask a question
Author

Changquan Calvin Sun

Other affiliations: Pharmacia, Pfizer, Amgen
Bio: Changquan Calvin Sun is an academic researcher from University of Minnesota. The author has contributed to research in topics: Tableting & Cocrystal. The author has an hindex of 45, co-authored 223 publications receiving 8070 citations. Previous affiliations of Changquan Calvin Sun include Pharmacia & Pfizer.


Papers
More filters
Journal ArticleDOI
TL;DR: A discussion of the FDA guidance on regulatory classification of pharmaceutical cocrystals of active pharmaceutical ingredients (APIs) was held in Manesar near Delhi, India, from February 2-4, 2012 as mentioned in this paper.
Abstract: The December 2011 release of a draft United States Food and Drug Administration (FDA) guidance concerning regulatory classification of pharmaceutical cocrystals of active pharmaceutical ingredients (APIs) addressed two matters of topical interest to the crystal engineering and pharmaceutical science communities: (1) a proposed definition of cocrystals; (2) a proposed classification of pharmaceutical cocrystals as dissociable “API-excipient” molecular complexes. The Indo–U.S. Bilateral Meeting sponsored by the Indo–U.S. Science and Technology Forum titled The Evolving Role of Solid State Chemistry in Pharmaceutical Science was held in Manesar near Delhi, India, from February 2–4, 2012. A session of the meeting was devoted to discussion of the FDA guidance draft. The debate generated strong consensus on the need to define cocrystals more broadly and to classify them like salts. It was also concluded that the diversity of API crystal forms makes it difficult to classify solid forms into three categories that...

734 citations

Journal ArticleDOI
TL;DR: Deep eutectic solvent can be a promising vehicle for increasing exposure of poorly soluble compounds in preclinical studies and in solubility in DES is 5 to 22,000 folds more than that in water.

417 citations

Journal ArticleDOI
TL;DR: It is proposed that the compactibility profile (tensile strength vs. solid fraction) is a predictor that is independent of tableting speed and can be used to predict tablet strength during formulation development and scale up.

320 citations

Journal ArticleDOI
Changquan Calvin Sun1, Hao Hou1
TL;DR: In this article, a 1:1 cocrystal of caffeine and methyl gallate was formed by suspending powders of the two pure compounds in ethanol, and the tabletability of the cocrestal was excellent over the entire pressure range.
Abstract: By the formation of a 1:1 cocrystal of caffeine and methyl gallate, we demonstrated that powder compaction properties could be profoundly improved. The selection criterion for cocrystal exhibiting superior compaction properties was the presence of slip planes in crystal structure. Bulk cocrystal was prepared by suspending powders of the two pure compounds in ethanol. Fine powders of similar particle size distribution were compressed. Within the whole range of compaction pressure, the tablet tensile strength of methyl gallate was very poor ( 180 MPa, severe lamination of caffeine tablets suddenly occurred. Tablet tensile strength dropped sharply at >240 MPa. In contrast, the tabletability of the cocrystal was excellent over the entire pressure range. Tablet tensile strength of the cocrystal was ∼2 times that of caffeine at <200 MPa, and the ratio gradually increased...

292 citations

Journal ArticleDOI
TL;DR: To understand the influence of polymorphic structure on the tableting properties of sulfamerazine, molecular simulation reveals slip planes in crystals of I but not in II, which confer greater plasticity to crystals of II than II and therefore greater tabletability.
Abstract: Purpose To understand the influence of polymorphic structure on the tableting properties of sulfamerazine

278 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: All works discussed in this review aim at demonstrating that Deep Eutectic Solvents not only allow the design of eco-efficient processes but also open a straightforward access to new chemicals and materials.
Abstract: Within the framework of green chemistry, solvents occupy a strategic place. To be qualified as a green medium, these solvents have to meet different criteria such as availability, non-toxicity, biodegradability, recyclability, flammability, and low price among others. Up to now, the number of available green solvents are rather limited. Here we wish to discuss a new family of ionic fluids, so-called Deep Eutectic Solvents (DES), that are now rapidly emerging in the current literature. A DES is a fluid generally composed of two or three cheap and safe components that are capable of self-association, often through hydrogen bond interactions, to form a eutectic mixture with a melting point lower than that of each individual component. DESs are generally liquid at temperatures lower than 100 °C. These DESs exhibit similar physico-chemical properties to the traditionally used ionic liquids, while being much cheaper and environmentally friendlier. Owing to these remarkable advantages, DESs are now of growing interest in many fields of research. In this review, we report the major contributions of DESs in catalysis, organic synthesis, dissolution and extraction processes, electrochemistry and material chemistry. All works discussed in this review aim at demonstrating that DESs not only allow the design of eco-efficient processes but also open a straightforward access to new chemicals and materials.

3,325 citations

Journal ArticleDOI
TL;DR: Deep Eutectic Solvents (DES) as discussed by the authors are a class of solvents that can be defined as a mixture of two or more components, which at a particular composition present a high melting point depression becoming liquids at room temperature.
Abstract: Green technology actively seeks new solvents to replace common organic solvents that present inherent toxicity and have high volatility, leading to evaporation of volatile organic compounds to the atmosphere. Over the past two decades, ionic liquids (ILs) have gained enormous attention from the scientific community, and the number of reported articles in the literature has grown exponentially. Nevertheless, IL “greenness” is often challenged, mainly due to their poor biodegradability, biocompatibility, and sustainability. An alternative to ILs are deep eutectic solvents (DES). Deep eutectic solvents are defined as a mixture of two or more components, which may be solid or liquid and that at a particular composition present a high melting point depression becoming liquids at room temperature. When the compounds that constitute the DES are primary metabolites, namely, aminoacids, organic acids, sugars, or choline derivatives, the DES are so called natural deep eutectic solvents (NADES). NADES fully represen...

1,439 citations

Journal ArticleDOI
TL;DR: This Perspective provides a brief historical introduction to crystal engineering itself and an assessment of the importance and utility of the supramolecular synthon, which is one of the most important concepts in the practical use and implementation of crystal design.
Abstract: How do molecules aggregate in solution, and how do these aggregates consolidate themselves in crystals? What is the relationship between the structure of a molecule and the structure of the crystal it forms? Why do some molecules adopt more than one crystal structure? Why do some crystal structures contain solvent? How does one design a crystal structure with a specified topology of molecules, or a specified coordination of molecules and/or ions, or with a specified property? What are the relationships between crystal structures and properties for molecular crystals? These are some of the questions that are being addressed today by the crystal engineering community, a group that draws from the larger communities of organic, inorganic, and physical chemists, crystallographers, and solid state scientists. This Perspective provides a brief historical introduction to crystal engineering itself and an assessment of the importance and utility of the supramolecular synthon, which is one of the most important concepts in the practical use and implementation of crystal design. It also provides a look to the future from the viewpoint of the author, and indicates some directions in which this field might be moving.

1,148 citations

Journal ArticleDOI
TL;DR: A new generation of designer solvents emerged in the last decade as promising green media for multiple applications, including separation processes: the low-transition-temperature mixtures (LTTMs).
Abstract: A new generation of designer solvents emerged in the last decade as promising green media for multiple applications, including separation processes: the low-transition-temperature mixtures (LTTMs). They can be prepared by mixing natural high-melting-point starting materials, which form a liquid by hydrogen-bond interactions. Among them, deep-eutectic solvents (DESs) were presented as promising alternatives to conventional ionic liquids (ILs). Some limitations of ILs are overcome by LTTMs, which are cheap and easy to prepare from natural and readily available starting materials, biodegradable, and renewable.

977 citations