scispace - formally typeset

Author

Changshui Zhang

Other affiliations: Microsoft, Cornell University, Intel
Bio: Changshui Zhang is an academic researcher from Tsinghua University. The author has contributed to research in topic(s): Semi-supervised learning & Support vector machine. The author has an hindex of 67, co-authored 493 publication(s) receiving 18471 citation(s). Previous affiliations of Changshui Zhang include Microsoft & Cornell University.
Papers
More filters

Proceedings Article
Mingkai Zheng, Shan You1, Fei Wang1, Chen Qian1  +3 moreInstitutions (4)
06 Dec 2021
Abstract: Self-supervised Learning (SSL) including the mainstream contrastive learning has achieved great success in learning visual representations without data annotations. However, most of methods mainly focus on the instance level information (\ie, the different augmented images of the same instance should have the same feature or cluster into the same class), but there is a lack of attention on the relationships between different instances. In this paper, we introduced a novel SSL paradigm, which we term as relational self-supervised learning (ReSSL) framework that learns representations by modeling the relationship between different instances. Specifically, our proposed method employs sharpened distribution of pairwise similarities among different instances as \textit{relation} metric, which is thus utilized to match the feature embeddings of different augmentations. Moreover, to boost the performance, we argue that weak augmentations matter to represent a more reliable relation, and leverage momentum strategy for practical efficiency. Experimental results show that our proposed ReSSL significantly outperforms the previous state-of-the-art algorithms in terms of both performance and training efficiency. Code is available at \url{this https URL}.

1 citations


Journal ArticleDOI
Abstract: This paper analyzes regularization terms proposed recently for improving the adversarial robustness of deep neural networks (DNNs), from a theoretical point of view. Specifically, we study possible connections between several effective methods, including input-gradient regularization, Jacobian regularization, curvature regularization, and a cross-Lipschitz functional. We investigate them on DNNs with general rectified linear activations, which constitute one of the most prevalent families of models for image classification and a host of other machine learning applications. We shed light on essential ingredients of these regularizations and re-interpret their functionality. Through the lens of our study, more principled and efficient regularizations can possibly be invented in the near future.

9 citations


Posted Content
Abstract: Vision transformers (ViTs) inherited the success of NLP but their structures have not been sufficiently investigated and optimized for visual tasks. One of the simplest solutions is to directly search the optimal one via the widely used neural architecture search (NAS) in CNNs. However, we empirically find this straightforward adaptation would encounter catastrophic failures and be frustratingly unstable for the training of superformer. In this paper, we argue that since ViTs mainly operate on token embeddings with little inductive bias, imbalance of channels for different architectures would worsen the weight-sharing assumption and cause the training instability as a result. Therefore, we develop a new cyclic weight-sharing mechanism for token embeddings of the ViTs, which enables each channel could more evenly contribute to all candidate architectures. Besides, we also propose identity shifting to alleviate the many-to-one issue in superformer and leverage weak augmentation and regularization techniques for more steady training empirically. Based on these, our proposed method, ViTAS, has achieved significant superiority in both DeiT- and Twins-based ViTs. For example, with only $1.4$G FLOPs budget, our searched architecture has $3.3\%$ ImageNet-$1$k accuracy than the baseline DeiT. With $3.0$G FLOPs, our results achieve $82.0\%$ accuracy on ImageNet-$1$k, and $45.9\%$ mAP on COCO$2017$ which is $2.4\%$ superior than other ViTs.

Posted Content
Abstract: Training a good supernet in one-shot NAS methods is difficult since the search space is usually considerably huge (\eg, $13^{21}$). In order to enhance the supernet's evaluation ability, one greedy strategy is to sample good paths, and let the supernet lean towards the good ones and ease its evaluation burden as a result. However, in practice the search can be still quite inefficient since the identification of good paths is not accurate enough and sampled paths still scatter around the whole search space. In this paper, we leverage an explicit path filter to capture the characteristics of paths and directly filter those weak ones, so that the search can be thus implemented on the shrunk space more greedily and efficiently. Concretely, based on the fact that good paths are much less than the weak ones in the space, we argue that the label of ``weak paths" will be more confident and reliable than that of ``good paths" in multi-path sampling. In this way, we thus cast the training of path filter in the positive and unlabeled (PU) learning paradigm, and also encourage a \textit{path embedding} as better path/operation representation to enhance the identification capacity of the learned filter. By dint of this embedding, we can further shrink the search space by aggregating similar operations with similar embeddings, and the search can be more efficient and accurate. Extensive experiments validate the effectiveness of the proposed method GreedyNASv2. For example, our obtained GreedyNASv2-L achieves $81.1\%$ Top-1 accuracy on ImageNet dataset, significantly outperforming the ResNet-50 strong baselines.

1 citations


Proceedings Article
Xintong Yu1, Hongming Zhang2, Yangqiu Song2, Changshui Zhang1  +2 moreInstitutions (4)
01 Nov 2021
Abstract: Resolving pronouns to their referents has long been studied as a fundamental natural language understanding problem. Previous works on pronoun coreference resolution (PCR) mostly focus on resolving pronouns to mentions in text while ignoring the exophoric scenario. Exophoric pronouns are common in daily communications, where speakers may directly use pronouns to refer to some objects present in the environment without introducing the objects first. Although such objects are not mentioned in the dialogue text, they can often be disambiguated by the general topics of the dialogue. Motivated by this, we propose to jointly leverage the local context and global topics of dialogues to solve the out-of-text PCR problem. Extensive experiments demonstrate the effectiveness of adding topic regularization for resolving exophoric pronouns.

Cited by
More filters

Journal ArticleDOI
Sinno Jialin Pan1, Qiang Yang1Institutions (1)
TL;DR: The relationship between transfer learning and other related machine learning techniques such as domain adaptation, multitask learning and sample selection bias, as well as covariate shift are discussed.
Abstract: A major assumption in many machine learning and data mining algorithms is that the training and future data must be in the same feature space and have the same distribution. However, in many real-world applications, this assumption may not hold. For example, we sometimes have a classification task in one domain of interest, but we only have sufficient training data in another domain of interest, where the latter data may be in a different feature space or follow a different data distribution. In such cases, knowledge transfer, if done successfully, would greatly improve the performance of learning by avoiding much expensive data-labeling efforts. In recent years, transfer learning has emerged as a new learning framework to address this problem. This survey focuses on categorizing and reviewing the current progress on transfer learning for classification, regression, and clustering problems. In this survey, we discuss the relationship between transfer learning and other related machine learning techniques such as domain adaptation, multitask learning and sample selection bias, as well as covariate shift. We also explore some potential future issues in transfer learning research.

13,267 citations


Journal ArticleDOI
Thomas G. Dietterich1Institutions (1)
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

12,323 citations


Journal ArticleDOI
Stefano Boccaletti, Vito Latora1, Vito Latora2, Yamir Moreno3  +2 moreInstitutions (4)
TL;DR: The major concepts and results recently achieved in the study of the structure and dynamics of complex networks are reviewed, and the relevant applications of these ideas in many different disciplines are summarized, ranging from nonlinear science to biology, from statistical mechanics to medicine and engineering.
Abstract: Coupled biological and chemical systems, neural networks, social interacting species, the Internet and the World Wide Web, are only a few examples of systems composed by a large number of highly interconnected dynamical units. The first approach to capture the global properties of such systems is to model them as graphs whose nodes represent the dynamical units, and whose links stand for the interactions between them. On the one hand, scientists have to cope with structural issues, such as characterizing the topology of a complex wiring architecture, revealing the unifying principles that are at the basis of real networks, and developing models to mimic the growth of a network and reproduce its structural properties. On the other hand, many relevant questions arise when studying complex networks’ dynamics, such as learning how a large ensemble of dynamical systems that interact through a complex wiring topology can behave collectively. We review the major concepts and results recently achieved in the study of the structure and dynamics of complex networks, and summarize the relevant applications of these ideas in many different disciplines, ranging from nonlinear science to biology, from statistical mechanics to medicine and engineering. © 2005 Elsevier B.V. All rights reserved.

8,690 citations


01 Jan 2005

3,967 citations



Network Information
Related Authors (5)
Feiping Nie

541 papers, 23K citations

82% related
Hong-Jiang Zhang

461 papers, 49K citations

81% related
Mingjing Li

153 papers, 8.7K citations

81% related
Dong Xu

254 papers, 20.4K citations

80% related
Ivor W. Tsang

322 papers, 18.6K citations

79% related
Performance
Metrics

Author's H-index: 67

No. of papers from the Author in previous years
YearPapers
202145
202032
201912
201821
201717
201612