scispace - formally typeset
Search or ask a question
Author

Changshui Zhang

Other affiliations: Microsoft, Cornell University, Intel
Bio: Changshui Zhang is an academic researcher from Tsinghua University. The author has contributed to research in topics: Semi-supervised learning & Support vector machine. The author has an hindex of 67, co-authored 493 publications receiving 18471 citations. Previous affiliations of Changshui Zhang include Microsoft & Cornell University.


Papers
More filters
Proceedings ArticleDOI
01 Oct 2017
TL;DR: In this article, the authors proposed a network slimming method for CNNs to simultaneously reduce the model size, decrease the run-time memory footprint, and lower the number of computing operations without compromising accuracy.
Abstract: The deployment of deep convolutional neural networks (CNNs) in many real world applications is largely hindered by their high computational cost. In this paper, we propose a novel learning scheme for CNNs to simultaneously 1) reduce the model size; 2) decrease the run-time memory footprint; and 3) lower the number of computing operations, without compromising accuracy. This is achieved by enforcing channel-level sparsity in the network in a simple but effective way. Different from many existing approaches, the proposed method directly applies to modern CNN architectures, introduces minimum overhead to the training process, and requires no special software/hardware accelerators for the resulting models. We call our approach network slimming, which takes wide and large networks as input models, but during training insignificant channels are automatically identified and pruned afterwards, yielding thin and compact models with comparable accuracy. We empirically demonstrate the effectiveness of our approach with several state-of-the-art CNN models, including VGGNet, ResNet and DenseNet, on various image classification datasets. For VGGNet, a multi-pass version of network slimming gives a 20× reduction in model size and a 5× reduction in computing operations.

1,728 citations

Journal ArticleDOI
TL;DR: A recognition approach is proposed based on the extracted frequency features for an SSVEP-based brain computer interface (BCI) that were higher than those using a widely used fast Fourier transform (FFT)-based spectrum estimation method.
Abstract: Canonical correlation analysis (CCA) is applied to analyze the frequency components of steady-state visual evoked potentials (SSVEP) in electroencephalogram (EEG). The essence of this method is to extract a narrowband frequency component of SSVEP in EEG. A recognition approach is proposed based on the extracted frequency features for an SSVEP-based brain computer interface (BCI). Recognition Results of the approach were higher than those using a widely used fast Fourier transform (FFT)-based spectrum estimation method

826 citations

Posted Content
TL;DR: The approach is called network slimming, which takes wide and large networks as input models, but during training insignificant channels are automatically identified and pruned afterwards, yielding thin and compact models with comparable accuracy.
Abstract: The deployment of deep convolutional neural networks (CNNs) in many real world applications is largely hindered by their high computational cost. In this paper, we propose a novel learning scheme for CNNs to simultaneously 1) reduce the model size; 2) decrease the run-time memory footprint; and 3) lower the number of computing operations, without compromising accuracy. This is achieved by enforcing channel-level sparsity in the network in a simple but effective way. Different from many existing approaches, the proposed method directly applies to modern CNN architectures, introduces minimum overhead to the training process, and requires no special software/hardware accelerators for the resulting models. We call our approach network slimming, which takes wide and large networks as input models, but during training insignificant channels are automatically identified and pruned afterwards, yielding thin and compact models with comparable accuracy. We empirically demonstrate the effectiveness of our approach with several state-of-the-art CNN models, including VGGNet, ResNet and DenseNet, on various image classification datasets. For VGGNet, a multi-pass version of network slimming gives a 20x reduction in model size and a 5x reduction in computing operations.

772 citations

Journal ArticleDOI
TL;DR: A novel graph-based semi supervised learning approach is proposed based on a linear neighborhood model, which assumes that each data point can be linearly reconstructed from its neighborhood, and can propagate the labels from the labeled points to the whole data set using these linear neighborhoods with sufficient smoothness.
Abstract: In many practical data mining applications such as text classification, unlabeled training examples are readily available, but labeled ones are fairly expensive to obtain. Therefore, semi supervised learning algorithms have aroused considerable interests from the data mining and machine learning fields. In recent years, graph-based semi supervised learning has been becoming one of the most active research areas in the semi supervised learning community. In this paper, a novel graph-based semi supervised learning approach is proposed based on a linear neighborhood model, which assumes that each data point can be linearly reconstructed from its neighborhood. Our algorithm, named linear neighborhood propagation (LNP), can propagate the labels from the labeled points to the whole data set using these linear neighborhoods with sufficient smoothness. A theoretical analysis of the properties of LNP is presented in this paper. Furthermore, we also derive an easy way to extend LNP to out-of-sample data. Promising experimental results are presented for synthetic data, digit, and text classification tasks.

720 citations

Journal ArticleDOI
TL;DR: Comprehensive experiments on urban vehicular traffic flow data of Beijing and comparisons with several other methods show that the Bayesian network is a very promising and effective approach for traffic flow modeling and forecasting, both for complete data and incomplete data.
Abstract: A new approach based on Bayesian networks for traffic flow forecasting is proposed. In this paper, traffic flows among adjacent road links in a transportation network are modeled as a Bayesian network. The joint probability distribution between the cause nodes (data utilized for forecasting) and the effect node (data to be forecasted) in a constructed Bayesian network is described as a Gaussian mixture model (GMM) whose parameters are estimated via the competitive expectation maximization (CEM) algorithm. Finally, traffic flow forecasting is performed under the criterion of minimum mean square error (mmse). The approach departs from many existing traffic flow forecasting models in that it explicitly includes information from adjacent road links to analyze the trends of the current link statistically. Furthermore, it also encompasses the issue of traffic flow forecasting when incomplete data exist. Comprehensive experiments on urban vehicular traffic flow data of Beijing and comparisons with several other methods show that the Bayesian network is a very promising and effective approach for traffic flow modeling and forecasting, both for complete data and incomplete data

652 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The relationship between transfer learning and other related machine learning techniques such as domain adaptation, multitask learning and sample selection bias, as well as covariate shift are discussed.
Abstract: A major assumption in many machine learning and data mining algorithms is that the training and future data must be in the same feature space and have the same distribution. However, in many real-world applications, this assumption may not hold. For example, we sometimes have a classification task in one domain of interest, but we only have sufficient training data in another domain of interest, where the latter data may be in a different feature space or follow a different data distribution. In such cases, knowledge transfer, if done successfully, would greatly improve the performance of learning by avoiding much expensive data-labeling efforts. In recent years, transfer learning has emerged as a new learning framework to address this problem. This survey focuses on categorizing and reviewing the current progress on transfer learning for classification, regression, and clustering problems. In this survey, we discuss the relationship between transfer learning and other related machine learning techniques such as domain adaptation, multitask learning and sample selection bias, as well as covariate shift. We also explore some potential future issues in transfer learning research.

18,616 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: The major concepts and results recently achieved in the study of the structure and dynamics of complex networks are reviewed, and the relevant applications of these ideas in many different disciplines are summarized, ranging from nonlinear science to biology, from statistical mechanics to medicine and engineering.

9,441 citations

Book
30 Sep 2010
TL;DR: Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images and takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene.
Abstract: Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art? Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of recipes, this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

4,146 citations