scispace - formally typeset
Search or ask a question
Author

Changshui Zhang

Other affiliations: Microsoft, Cornell University, Intel
Bio: Changshui Zhang is an academic researcher from Tsinghua University. The author has contributed to research in topics: Semi-supervised learning & Support vector machine. The author has an hindex of 67, co-authored 493 publications receiving 18471 citations. Previous affiliations of Changshui Zhang include Microsoft & Cornell University.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper considers a general problem of learning from pairwise constraints in the form of must-links and cannot-links, and aims to learn a Mahalanobis distance metric.

541 citations

Journal ArticleDOI
TL;DR: A unified manifold learning framework for semi-supervised and unsupervised dimension reduction by employing a simple but effective linear regression function to map the new data points by modeling the mismatch between h(X) and F.
Abstract: We propose a unified manifold learning framework for semi-supervised and unsupervised dimension reduction by employing a simple but effective linear regression function to map the new data points. For semi-supervised dimension reduction, we aim to find the optimal prediction labels F for all the training samples X, the linear regression function h(X) and the regression residue F0 = F - h(X) simultaneously. Our new objective function integrates two terms related to label fitness and manifold smoothness as well as a flexible penalty term defined on the residue F0. Our Semi-Supervised learning framework, referred to as flexible manifold embedding (FME), can effectively utilize label information from labeled data as well as a manifold structure from both labeled and unlabeled data. By modeling the mismatch between h(X) and F, we show that FME relaxes the hard linear constraint F = h(X) in manifold regularization (MR), making it better cope with the data sampled from a nonlinear manifold. In addition, we propose a simplified version (referred to as FME/U) for unsupervised dimension reduction. We also show that our proposed framework provides a unified view to explain and understand many semi-supervised, supervised and unsupervised dimension reduction techniques. Comprehensive experiments on several benchmark databases demonstrate the significant improvement over existing dimension reduction algorithms.

435 citations

Proceedings ArticleDOI
10 Oct 2004
TL;DR: MRBIR first makes use of a manifold ranking algorithm to explore the relationship among all the data points in the feature space, and then measures relevance between the query and all the images in the database accordingly, which is different from traditional similarity metrics based on pair-wise distance.
Abstract: In this paper, we propose a novel transductive learning framework named manifold-ranking based image retrieval (MRBIR) Given a query image, MRBIR first makes use of a manifold ranking algorithm to explore the relationship among all the data points in the feature space, and then measures relevance between the query and all the images in the database accordingly, which is different from traditional similarity metrics based on pair-wise distance In relevance feedback, if only positive examples are available, they are added to the query set to improve the retrieval result; if examples of both labels can be obtained, MRBIR discriminately spreads the ranking scores of positive and negative examples, considering the asymmetry between these two types of images Furthermore, three active learning methods are incorporated into MRBIR, which select images in each round of relevance feedback according to different principles, aiming to maximally improve the ranking result Experimental results on a general-purpose image database show that MRBIR attains a significant improvement over existing systems from all aspects

382 citations

Proceedings ArticleDOI
25 Jun 2006
TL;DR: A novel graph-based semi supervised learning approach is proposed based on a linear neighborhood model, which assumes that each data point can be linearly reconstructed from its neighborhood, and can propagate the labels from the labeled points to the whole data set using these linear neighborhoods with sufficient smoothness.
Abstract: A novel semi-supervised learning approach is proposed based on a linear neighborhood model, which assumes that each data point can be linearly reconstructed from its neighborhood. Our algorithm, named Linear Neighborhood Propagation (LNP), can propagate the labels from the labeled points to the whole dataset using these linear neighborhoods with sufficient smoothness. We also derive an easy way to extend LNP to out-of-sample data. Promising experimental results are presented for synthetic data, digit and text classification tasks.

381 citations

Proceedings ArticleDOI
08 Dec 2001
TL;DR: A two-step statistical modeling approach that integrates both a global parametric model and a local nonparametric model is developed, which can generate photorealistic face images.
Abstract: In this paper, we study face hallucination, or synthesizing a high-resolution face image from low-resolution input, with the help of a large collection of high-resolution face images. We develop a two-step statistical modeling approach that integrates both a global parametric model and a local nonparametric model. First, we derive a global linear model to learn the relationship between the high-resolution face images and their smoothed and down-sampled lower resolution ones. Second, the residual between an original high-resolution image and the reconstructed high-resolution image by a learned linear model is modeled by a patch-based nonparametric Markov network, to capture the high-frequency content of faces. By integrating both global and local models, we can generate photorealistic face images. Our approach is demonstrated by extensive experiments with high-quality hallucinated faces.

379 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The relationship between transfer learning and other related machine learning techniques such as domain adaptation, multitask learning and sample selection bias, as well as covariate shift are discussed.
Abstract: A major assumption in many machine learning and data mining algorithms is that the training and future data must be in the same feature space and have the same distribution. However, in many real-world applications, this assumption may not hold. For example, we sometimes have a classification task in one domain of interest, but we only have sufficient training data in another domain of interest, where the latter data may be in a different feature space or follow a different data distribution. In such cases, knowledge transfer, if done successfully, would greatly improve the performance of learning by avoiding much expensive data-labeling efforts. In recent years, transfer learning has emerged as a new learning framework to address this problem. This survey focuses on categorizing and reviewing the current progress on transfer learning for classification, regression, and clustering problems. In this survey, we discuss the relationship between transfer learning and other related machine learning techniques such as domain adaptation, multitask learning and sample selection bias, as well as covariate shift. We also explore some potential future issues in transfer learning research.

18,616 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: The major concepts and results recently achieved in the study of the structure and dynamics of complex networks are reviewed, and the relevant applications of these ideas in many different disciplines are summarized, ranging from nonlinear science to biology, from statistical mechanics to medicine and engineering.

9,441 citations

Book
30 Sep 2010
TL;DR: Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images and takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene.
Abstract: Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art? Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of recipes, this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

4,146 citations