scispace - formally typeset
Search or ask a question
Author

Chankyu Lee

Bio: Chankyu Lee is an academic researcher from Purdue University. The author has contributed to research in topics: Spiking neural network & Artificial neural network. The author has an hindex of 9, co-authored 17 publications receiving 436 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This work proposes an approximate derivative method that accounts for the leaky behavior of LIF neurons that enables training deep convolutional SNNs directly (with input spike events) using spike-based backpropagation and analyze sparse event-based computations to demonstrate the efficacy of the proposed SNN training method for inference operation in the spiking domain.
Abstract: Spiking Neural Networks (SNNs) have recently emerged as a prominent neural computing paradigm. However, the typical shallow SNN architectures have limited capacity for expressing complex representations while training deep SNNs using input spikes has not been successful so far. Diverse methods have been proposed to get around this issue such as converting off-the-shelf trained deep Artificial Neural Networks (ANNs) to SNNs. However, the ANN-SNN conversion scheme fails to capture the temporal dynamics of a spiking system. On the other hand, it is still a difficult problem to directly train deep SNNs using input spike events due to the discontinuous, non-differentiable nature of the spike generation function. To overcome this problem, we propose an approximate derivative method that accounts for the leaky behavior of LIF neurons. This method enables training deep convolutional SNNs directly (with input spike events) using spike-based backpropagation. Our experiments show the effectiveness of the proposed spike-based learning on deep networks (VGG and Residual architectures) by achieving the best classification accuracies in MNIST, SVHN, and CIFAR-10 datasets compared to other SNNs trained with a spike-based learning. Moreover, we analyze sparse event-based computations to demonstrate the efficacy of the proposed SNN training method for inference operation in the spiking domain.

255 citations

Journal ArticleDOI
TL;DR: This paper proposes a pre-training scheme using biologically plausible unsupervised learning, namely Spike-Timing-Dependent-Plasticity (STDP), in order to better initialize the parameters in multi-layer systems prior to supervised optimization.
Abstract: Spiking Neural Networks (SNNs) are fast becoming a promising candidate for brain-inspired neuromorphic computing because of their inherent power efficiency and impressive inference accuracy across several cognitive tasks such as image classification and speech recognition. The recent efforts in SNNs have been focused on implementing deeper networks with multiple hidden layers to incorporate exponentially more difficult functional representations. In this paper, we propose a pre-training scheme using biologically plausible unsupervised learning, namely Spike-Timing-Dependent-Plasticity (STDP), in order to better initialize the parameters in multi-layer systems prior to supervised optimization. The multi-layer SNN is comprised of alternating convolutional and pooling layers followed by fully-connected layers, which are populated with leaky integrate-and-fire spiking neurons. We train the deep SNNs in two phases wherein, first, convolutional kernels are pre-trained in a layer-wise manner with unsupervised learning followed by fine-tuning the synaptic weights with spike-based supervised gradient descent backpropagation. Our experiments on digit recognition demonstrate that the STDP-based pre-training with gradient-based optimization provides improved robustness, faster (~2.5 ×) training time and better generalization compared with purely gradient-based training without pre-training.

150 citations

Journal ArticleDOI
TL;DR: In this article, the authors present an augmented version of the conventional SRAM bit-cells, called the X-SRAM, with the ability to perform in-memory, vector Boolean computations, in addition to the usual memory storage operations.
Abstract: Silicon-based static random access memories (SRAM) and digital Boolean logic have been the workhorse of the state-of-the-art computing platforms. Despite tremendous strides in scaling the ubiquitous metal-oxide-semiconductor transistor, the underlying von-Neumann computing architecture has remained unchanged. The limited throughput and energy-efficiency of the state-of-the-art computing systems, to a large extent, result from the well-known von-Neumann bottleneck . The energy and throughput inefficiency of the von-Neumann machines have been accentuated in recent times due to the present emphasis on data-intensive applications such as artificial intelligence, machine learning, and cryptography. A possible approach towards mitigating the overhead associated with the von-Neumann bottleneck is to enable in-memory Boolean computations. In this paper, we present an augmented version of the conventional SRAM bit-cells, called the X-SRAM , with the ability to perform in-memory, vector Boolean computations, in addition to the usual memory storage operations. We propose at least six different schemes for enabling in-memory vector computations, including NAND, NOR, IMP (implication), XOR logic gates, with respect to different bit-cell topologies − the 8T cell and the 8+T Differential cell. In addition, we also present a novel ‘read-compute-store’ scheme, wherein the computed Boolean function can be directly stored in the memory without the need of latching the data and carrying out a subsequent write operation. The feasibility of the proposed schemes has been verified using the predictive transistor models and detailed Monte-Carlo variation analysis. As an illustration, we also present the efficacy of the proposed in-memory computations by implementing advanced encryption standard algorithm on a non-standard von-Neumann machine wherein the conventional SRAM is replaced by X-SRAM. Our simulations indicated that up to 75% of memory accesses can be saved using the proposed techniques.

131 citations

Journal ArticleDOI
TL;DR: A deep SpiCNN, consisting of two convolutional layers trained using the unsupervised Convolutional STDP learning methodology, achieved classification accuracies of 91.1% and 97.6%, respectively, for inferring handwritten digits from the MNIST data set and a subset of natural images from the Caltech data set.
Abstract: Spiking neural networks (SNNs) have emerged as a promising brain inspired neuromorphic-computing paradigm for cognitive system design due to their inherent event-driven processing capability. The fully connected (FC) shallow SNNs typically used for pattern recognition require large number of trainable parameters to achieve competitive classification accuracy. In this paper, we propose a deep spiking convolutional neural network (SpiCNN) composed of a hierarchy of stacked convolutional layers followed by a spatial-pooling layer and a final FC layer. The network is populated with biologically plausible leaky-integrate-and-fire (LIF) neurons interconnected by shared synaptic weight kernels. We train convolutional kernels layer-by-layer in an unsupervised manner using spike-timing-dependent plasticity (STDP) that enables them to self-learn characteristic features making up the input patterns. In order to further improve the feature learning efficiency, we propose using smaller $3\boldsymbol \times 3$ kernels trained using STDP-based synaptic weight updates performed over a mini-batch of input patterns. Our deep SpiCNN, consisting of two convolutional layers trained using the unsupervised convolutional STDP learning methodology, achieved classification accuracies of 91.1% and 97.6%, respectively, for inferring handwritten digits from the MNIST data set and a subset of natural images from the Caltech data set.

107 citations

Journal ArticleDOI
TL;DR: In this article, an augmented version of the conventional SRAM bit-cells, called X-SRAM, was proposed to enable in-memory, vector Boolean computations, in addition to the usual memory storage operations, and the feasibility of the proposed schemes has been verified using predictive transistor models and Monte-Carlo variation analysis.
Abstract: Silicon-based Static Random Access Memories (SRAM) and digital Boolean logic have been the workhorse of the state-of-art computing platforms. Despite tremendous strides in scaling the ubiquitous metal-oxide-semiconductor transistor, the underlying \textit{von-Neumann} computing architecture has remained unchanged. The limited throughput and energy-efficiency of the state-of-art computing systems, to a large extent, results from the well-known \textit{von-Neumann bottleneck}. The energy and throughput inefficiency of the von-Neumann machines have been accentuated in recent times due to the present emphasis on data-intensive applications like artificial intelligence, machine learning \textit{etc}. A possible approach towards mitigating the overhead associated with the von-Neumann bottleneck is to enable \textit{in-memory} Boolean computations. In this manuscript, we present an augmented version of the conventional SRAM bit-cells, called \textit{the X-SRAM}, with the ability to perform in-memory, vector Boolean computations, in addition to the usual memory storage operations. We propose at least six different schemes for enabling in-memory vector computations including NAND, NOR, IMP (implication), XOR logic gates with respect to different bit-cell topologies $-$ the 8T cell and the 8$^+$T Differential cell. In addition, we also present a novel \textit{`read-compute-store'} scheme, wherein the computed Boolean function can be directly stored in the memory without the need of latching the data and carrying out a subsequent write operation. The feasibility of the proposed schemes has been verified using predictive transistor models and Monte-Carlo variation analysis.

67 citations


Cited by
More filters
Journal ArticleDOI
27 Nov 2019-Nature
TL;DR: An overview of the developments in neuromorphic computing for both algorithms and hardware is provided and the fundamentals of learning and hardware frameworks are highlighted, with emphasis on algorithm–hardware codesign.
Abstract: Guided by brain-like ‘spiking’ computational frameworks, neuromorphic computing—brain-inspired computing for machine intelligence—promises to realize artificial intelligence while reducing the energy requirements of computing platforms. This interdisciplinary field began with the implementation of silicon circuits for biological neural routines, but has evolved to encompass the hardware implementation of algorithms with spike-based encoding and event-driven representations. Here we provide an overview of the developments in neuromorphic computing for both algorithms and hardware and highlight the fundamentals of learning and hardware frameworks. We discuss the main challenges and the future prospects of neuromorphic computing, with emphasis on algorithm–hardware codesign. The authors review the advantages and future prospects of neuromorphic computing, a multidisciplinary engineering concept for energy-efficient artificial intelligence with brain-inspired functionality.

877 citations

Journal ArticleDOI
TL;DR: This paper proposes a novel ‘Simultaneous Logic in-Memory’ (SLIM) methodology which is complementary to existing LIM approaches in literature and demonstrates novel SLIM bitcells comprising non-filamentary bilayer analog OxRAM devices with NMOS transistors.
Abstract: von Neumann architecture based computers isolate computation and storage (i.e. data is shuttled between computation blocks (processor) and memory blocks). The to-and-fro movement of data leads to a fundamental limitation of modern computers, known as the Memory wall. Logic in-Memory (LIM)/In-Memory Computing (IMC) approaches aim to address this bottleneck by directly computing inside memory units thereby eliminating energy-intensive and time-consuming data movement. Several recent works in literature, propose realization of logic function(s) directly using arrays of emerging resistive memory devices (example- memristors, RRAM/ReRAM, PCM, CBRAM, OxRAM, STT-MRAM etc.), rather than using conventional transistors for computing. The logic/embedded-side of digital systems (like processors, micro-controllers) can greatly benefit from such LIM realizations. However, the pure storage-side of digital systems (example SSDs, enterprise storage etc.) will not benefit much from such LIM approaches as when memory arrays are used for logic they lose their core functionality of storage. Thus, there is the need for an approach complementary to existing LIM techniques, that's more beneficial for the storage-side of digital systems; one that gives compute capability to memory arrays not at the cost of their existing stored states. Fundamentally, this would require memory nanodevice arrays that are capable of storing and computing simultaneously. In this paper, we propose a novel 'Simultaneous Logic in-Memory' (SLIM) methodology which is complementary to existing LIM approaches in literature. Through extensive experiments we demonstrate novel SLIM bitcells (1T-1R/2T-1R) comprising non-filamentary bilayer analog OxRAM devices with NMOS transistors. Proposed bitcells are capable of implementing both Memory and Logic operations simultaneously. Detailed programming scheme, array level implementation, and controller architecture are also proposed. Furthermore, to study the impact of proposed SLIM approach for real-world implementations, we performed analysis for two applications: (i) Sobel Edge Detection, and (ii) Binary Neural Network- Multi layer Perceptron (BNN-MLP). By performing all computations in SLIM bitcell array, huge Energy Delay Product (EDP) savings of ≈75× for 1T-1R (≈40× for 2T-1R) SLIM bitcell were observed for edge-detection application while EDP savings of ≈3.5× for 1T-1R (≈1.6× for 2T-1R) SLIM bitcell were observed for BNN-MLP application respectively, in comparison to conventional computing. EDP savings owing to reduction in data transfer between CPU ↔ memory is observed to be ≈780× (for both SLIM bitcells).

633 citations

Journal ArticleDOI
Michael Pfeiffer1, Thomas Pfeil1
TL;DR: This review addresses the opportunities that deep spiking networks offer and investigates in detail the challenges associated with training SNNs in a way that makes them competitive with conventional deep learning, but simultaneously allows for efficient mapping to hardware.
Abstract: Spiking neural networks (SNNs) are inspired by information processing in biology, where sparse and asynchronous binary signals are communicated and processed in a massively parallel fashion. SNNs on neuromorphic hardware exhibit favorable properties such as low power consumption, fast inference, and event-driven information processing. This makes them interesting candidates for the efficient implementation of deep neural networks, the method of choice for many machine learning tasks. In this review, we address the opportunities that deep spiking networks offer and investigate in detail the challenges associated with training SNNs in a way that makes them competitive with conventional deep learning, but simultaneously allows for efficient mapping to hardware. A wide range of training methods for SNNs is presented, ranging from the conversion of conventional deep networks into SNNs, constrained training before conversion, spiking variants of backpropagation, and biologically motivated variants of STDP. The goal of our review is to define a categorization of SNN training methods, and summarize their advantages and drawbacks. We further discuss relationships between SNNs and binary networks, which are becoming popular for efficient digital hardware implementation. Neuromorphic hardware platforms have great potential to enable deep spiking networks in real-world applications. We compare the suitability of various neuromorphic systems that have been developed over the past years, and investigate potential use cases. Neuromorphic approaches and conventional machine learning should not be considered simply two solutions to the same classes of problems, instead it is possible to identify and exploit their task-specific advantages. Deep SNNs offer great opportunities to work with new types of event-based sensors, exploit temporal codes and local on-chip learning, and we have so far just scratched the surface of realizing these advantages in practical applications.

511 citations

Journal ArticleDOI
TL;DR: This work proposes an approximate derivative method that accounts for the leaky behavior of LIF neurons that enables training deep convolutional SNNs directly (with input spike events) using spike-based backpropagation and analyze sparse event-based computations to demonstrate the efficacy of the proposed SNN training method for inference operation in the spiking domain.
Abstract: Spiking Neural Networks (SNNs) have recently emerged as a prominent neural computing paradigm. However, the typical shallow SNN architectures have limited capacity for expressing complex representations while training deep SNNs using input spikes has not been successful so far. Diverse methods have been proposed to get around this issue such as converting off-the-shelf trained deep Artificial Neural Networks (ANNs) to SNNs. However, the ANN-SNN conversion scheme fails to capture the temporal dynamics of a spiking system. On the other hand, it is still a difficult problem to directly train deep SNNs using input spike events due to the discontinuous, non-differentiable nature of the spike generation function. To overcome this problem, we propose an approximate derivative method that accounts for the leaky behavior of LIF neurons. This method enables training deep convolutional SNNs directly (with input spike events) using spike-based backpropagation. Our experiments show the effectiveness of the proposed spike-based learning on deep networks (VGG and Residual architectures) by achieving the best classification accuracies in MNIST, SVHN, and CIFAR-10 datasets compared to other SNNs trained with a spike-based learning. Moreover, we analyze sparse event-based computations to demonstrate the efficacy of the proposed SNN training method for inference operation in the spiking domain.

255 citations

Posted Content
TL;DR: It is shown that incorporating learnable membrane time constants can make the network less sensitive to initial values and can speed up learning, and reevaluate the pooling methods in SNNs and find that max-pooling will not lead to significant information loss and have the advantage of low computation cost and binary compatibility.
Abstract: Spiking Neural Networks (SNNs) have attracted enormous research interest due to temporal information processing capability, low power consumption, and high biological plausibility. However, the formulation of efficient and high-performance learning algorithms for SNNs is still challenging. Most existing learning methods learn the synaptic-related parameters only, and require manual tuning of the membrane-related parameters that determine the dynamics of single spiking neurons. These parameters are typically chosen to be the same for all neurons, which limits the diversity of neurons and thus the expressiveness of the resulting SNNs. In this paper, we take inspiration from the observation that membrane-related parameters are different across brain regions, and propose a training algorithm that is capable to learn not only the synaptic weights but also the membrane time constants of SNN. We show that incorporating learnable membrane time constants can make the network less sensitive to initial values and can speed up learning. In addition, we reevaluate the pooling methods in SNNs and find that max-pooling is able to increase the fitting capacity of SNNs in temporal tasks, as well as reduce the computation cost. We evaluate the proposed method for image classification tasks on both traditional static MNIST, Fashion-MNIST, CIFAR-10 datasets, and neuromorphic N-MNIST, CIFAR10-DVS, DVS128 Gesture datasets. The experiment results show that the proposed method outperforms the state-of-the-art accuracy on nearly all datasets, using fewer time-steps.

208 citations