scispace - formally typeset
Search or ask a question
Author

Chantal Guillard

Bio: Chantal Guillard is an academic researcher from Claude Bernard University Lyon 1. The author has contributed to research in topics: Photocatalysis & Anatase. The author has an hindex of 55, co-authored 208 publications receiving 12491 citations. Previous affiliations of Chantal Guillard include National Institute of Advanced Industrial Science and Technology & École centrale de Lyon.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the TiO2/UV photocatalytic degradation of methylene blue (MB) has been investigated in aqueous heterogeneous suspensions, and it has been shown that the degradation pathway can be determined by a careful identification of intermediate products, in particular aromatics, whose successive hydroxylations lead to the aromatic ring opening.
Abstract: The TiO2/UV photocatalytic degradation of methylene blue (MB) has been investigated in aqueous heterogeneous suspensions. In addition to a prompt removal of the color, TiO2/UV-based photocatalysis was simultaneously able to oxidize the dye, with an almost complete mineralization of carbon and of nitrogen and sulfur heteroatoms into CO2 ,N H4 + ,N O3 − and SO4 2− , respectively. A detailed degradation pathway has been determined by a careful identification of intermediate products, in particular aromatics, whose successive hydroxylations lead to the aromatic ring opening. These results suggest that TiO2/UV photocatalysis may be envisaged as a method for treatment of diluted waste waters in textile industries. © 2001 Elsevier Science B.V. All rights reserved.

2,359 citations

Journal ArticleDOI
TL;DR: In this article, the photocatalytic degradation of five various dyes has been investigated in TiO 2 /UV aqueous suspensions, and it was shown that the dyes can be degraded by varying the chemical structures, either anthraquinonic (Alizarin S), or azoic (Crocein Orange G (OG), Methyl Red (MR), Congo Red (CR)) or heteropolyaromatic (Methylene Blue (MB)).
Abstract: The photocatalytic degradation of five various dyes has been investigated in TiO 2 /UV aqueous suspensions. It was attempted to determine the feasibility of such a degradation by varying the chemical structures, either anthraquinonic (Alizarin S (AS)), or azoic (Crocein Orange G (OG), Methyl Red (MR), Congo Red (CR)) or heteropolyaromatic (Methylene Blue (MB)). In addition to a prompt removal of the colors, TiO 2 /UV-based photocatalysis was simultaneously able to fully oxidize the dyes, with a complete mineralization of carbon into CO 2 . Sulfur heteroatoms were converted into innocuous SO 4 2− ions. The mineralization of nitrogen was more complex. Nitrogen atoms in the −3 oxidation state, such as in amino-groups, remain at this reduction degree and produced NH 4 + cations, subsequently and very slowly converted into NO 3 − ions. For azo-dye (OG, MR, CR) degradation, the complete mass balance in nitrogen indicated that the central NN azo-group was converted in gaseous dinitrogen, which is the ideal issue for the elimination of nitrogen-containing pollutants, not only for environmental photocatalysis but also for any physicochemical method. The aromatic rings were submitted to successive attacks by photogenerated OH radicals leading to hydroxylated metabolites before the ring opening and the final evolution of CO 2 induced by repeated subsequent “photo-Kolbe” reactions with carboxylic intermediates. These results suggest that TiO 2 /UV photocatalysis may be envisaged as a method for treatment of diluted colored waste waters not only for decolorization, but also for detoxification, in particular in textile industries in semi-arid countries.

1,428 citations

Journal ArticleDOI
TL;DR: The role of adsorption is suggested, indicating that the reaction occurs at the TiO 2 surface and not in the solution as mentioned in this paper, and the presence of a silica-binder with an acidic pzc is suggested to be at the origin of the decrease in efficiency.
Abstract: Anionic (Alizarin S (AS), azo-Methyl Red (MR), Congo Red (CR), Orange G (OG)) and cationic (Methylene Blue (MB)) dyes were degraded, either individually or in mixtures, by using UV-irradiated TiO 2 in suspension or supported on glass and on paper. The influence of the chemical structure of different dyes as well as that of pH and of the presence of inorganic salts on the photocatalytic properties of TiO 2 has been discussed. The role of adsorption is suggested, indicating that the reaction occurs at the TiO 2 surface and not in the solution. S and N hetero-atoms are respectively mineralized into SO 4 2− , NO 3 − and NH 4 + , except azo-groups which mainly formed N 2 which represents an ideal case for a decontamination reaction. The fate of nitrogen strongly depends on its initial oxidation degree. High photocatalytic activities have been found for TiO 2 coated on glass by the sol–gel method. Its efficiency was intermediate between those of PC-500 and P-25 powders. The efficiency of PC-500 TiO 2 sample, fixed on paper by using a binder, is slightly less important than that of the powder. The presence of a silica-binder with an acidic pzc is suggested to be at the origin of the decrease in efficiency.

469 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed degradation pathway has been determined by careful identification of intermediate products, in particular, carboxylic acids, whose decarboxylation by photo-Kolbe reactions constitutes the main source of CO2 evolution.

456 citations

Journal ArticleDOI
TL;DR: In this paper, the efficiency of photocatalytic disinfection, used to inactivate Escherischia coli K12 under different physico-chemical parameters, was examined and the photocatalyst chosen was the semiconductor TiO2 degussa P25 and the irradiation was produced by an HPK 125 lamp.
Abstract: The efficiency of photocatalytic disinfection, used to inactivate Escherischia coli K12 under different physico-chemical parameters, was examined. The photocatalyst chosen was the semiconductor TiO2 degussa P25 and the irradiation was produced by an HPK 125 lamp. The effect of titania concentration was investigated using two E. coli concentrations. The photocatalyst concentration ranged from 0.1 to 2.5 g/L. The evolution of E. coli inactivation as function of time was discussed depending on the E. coli and TiO2 concentrations. The optimal concentration of the photocatalyst, 0.25 g/L, is lower than that necessary to absorb all photons and to degrade the organic compounds. Some hypotheses are presented to explain this behaviour. The effect of the different domains of UV light (UVA, UVB, and UVC) was also studied and modification of the light irradiation intensity is discussed. No bacteria photolysis was obtained with UVA but the use UVC had, on the contrary, a detrimental effect on bacteria survival. The addition of titania at a low concentration, 0.25 g/L, improved the inactivation of E. coli in the presence of UVA and UVB, but a detrimental effect was observed under UVC. The disinfection efficiency increases as a function of light intensity, whatever the photocatalytic conditions (different TiO2 concentrations and different UV domains). No bacterial growth was observed after disinfection, whether the system contained titania or not.

372 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The field of photocatalysis can be traced back more than 80 years to early observations of the chalking of titania-based paints and to studies of the darkening of metal oxides in contact with organic compounds in sunlight as discussed by the authors.

5,729 citations

Journal ArticleDOI
TL;DR: For the first time, a multi-variables optimization approach is described to determine the optimum operation parameters so as to enhance process performance and photooxidation efficiency in the photocatalytic water treatment process.

4,293 citations

Journal ArticleDOI
TL;DR: In this paper, photo-induced superhydrophilicity was used on the surface of a wide-band gap semiconductor like titanium dioxide (TiO 2 ) for photocatalytic activity towards environmentally hazardous compounds.

4,241 citations

Journal ArticleDOI
TL;DR: In this article, the photocatalytic degradation of azo dyes containing different functionalities has been reviewed using TiO2 as photocatalyst in aqueous solution under solar and UV irradiation.
Abstract: The photocatalytic degradation of azo dyes containing different functionalities has been reviewed using TiO2 as photocatalyst in aqueous solution under solar and UV irradiation. The mechanism of the photodegradation depends on the radiation used. Charge injection mechanism takes place under visible radiation whereas charge separation occurred under UV light radiation. The process is monitored by following either the decolorization rate and the formation of its end-products. Kinetic analyses indicate that the photodegradation rates of azo dyes can usually be approximated as pseudo-first-order kinetics for both degradation mechanisms, according to the Langmuir–Hinshelwood model. The degradation of dyes depend on several parameters such as pH, catalyst concentration, substrate concentration and the presence of electron acceptors such as hydrogen peroxide and ammonium persulphate besides molecular oxygen. The presence of other substances such as inorganic ions, humic acids and solvents commonly found in textile effluents is also discussed. The photocatalyzed degradation of pesticides does not occur instantaneously to form carbon dioxide, but through the formation of long-lived intermediate species. Thus, the study focuses also on the determination of the nature of the principal organic intermediates and the evolution of the mineralization as well as on the degradation pathways followed during the process. Major identified intermediates are hydroxylated derivatives, aromatic amines, naphthoquinone, phenolic compounds and several organic acids. By-products evaluation and toxicity measurements are the key-actions in order to assess the overall process.

3,692 citations