scispace - formally typeset
Search or ask a question
Author

Chao Chen

Bio: Chao Chen is an academic researcher from Carnegie Mellon University. The author has contributed to research in topics: Integrated gasification combined cycle & Power station. The author has an hindex of 5, co-authored 6 publications receiving 991 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors use a generalized modeling tool to estimate and compare the emissions, efficiency, resource requirements and current costs of fossil fuel power plants with CCS on a systematic basis.

706 citations

Book ChapterDOI
01 Jan 2005
TL;DR: In this article, the authors use a generalized modeling tool to estimate and compare the emissions, efficiency, resource requirements and costs of PC, IGCC and NGCC power plants on a systematic basis.
Abstract: Studies of CO2 capture and storage (CCS) costs necessarily employ a host of technical and economic assumptions regarding the particular technology or system of interest, including details regarding the capture technology design, the power plant or gas stream treated, and the methods of CO2 transport and storage. Because the specific assumptions employed can dramatically affect the results of an analysis, published studies are often of limited value to researchers, analysts and industry personnel seeking results for alternative assumptions or plant characteristics. In the present paper, we use a generalized modeling tool to estimate and compare the emissions, efficiency, resource requirements and costs of PC, IGCC and NGCC power plants on a systematic basis. This plant-level analysis explores a broader range of key assumptions than found in recent studies we reviewed. In particular, the effects on cost comparisons of higher natural gas prices and differential plant utilization rates are highlighted, along with implications of financing and operating assumptions for IGCC plants. The impacts of CCS energy requirements on plant-level resource requirements and multi-media emissions also are quantified. While some CCS technologies offer ancillary benefits via the co-capture of certain criteria air pollutants, the increases in specific fuel consumption, reagent use, solid wastes and other air pollutants associated with current CCS systems are found to be significant. To properly characterize such impacts, an alternative definition of the “energy penalty” is proposed in lieu of the prevailing use of this term.

167 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed an integrated modeling framework to evaluate the performance and cost of alternative carbon capture and storage (CCS) technologies for fossil-fueled power plants in the context of multi-pollutant control requirements.

129 citations

01 Jan 2007
TL;DR: In this paper, the authors present a pipeline transport process for carbon dioxide and demonstrate the physical properties of carbon dioxide in pipe segments and booster pump design in pipeline transport cost models, as well as an illustrative performance model.
Abstract: 141 Nomenclature 142 Introduction 143 Pipeline Transport Process Description 143 Physical Properties of Carbon Dioxide 144 Pipe Segment Engineering and Design 148 Booster Pump Engineering and Design 150 Illustrative Performance Model Results 151 Pipeline Transport Cost Models 152

20 citations

01 Jan 2003
TL;DR: In this paper, the authors developed an integrated modeling framework to evaluate the performance and costs of alternative CO2 capture and storage technologies for fossil-fueled power plants, in the context of multi-pollutant control requirements.
Abstract: As part of the USDOE’s Carbon Sequestration Program, we have developed an integrated modeling framework to evaluate the performance and costs of alternative CO2 capture and storage technologies for fossil-fueled power plants, in the context of multi-pollutant control requirements. This model (called the IECM-CS) allows for explicit characterization of the uncertainty or variability in any or all model input parameters. This paper reviews the major sources of uncertainty or variability in CO2 cost estimates, then uses the IECM-CS to analyze CO2 mitigation costs and uncertainties for currently available CO2 capture technologies applicable to coal-based power plants.

7 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Kenji Sumida, David L. Rogow, Jarad A. Mason, Thomas M. McDonald, Eric D. Bloch, Zoey R. Herm, Tae-Hyun Bae, Jeffrey R. Long
Abstract: Kenji Sumida, David L. Rogow, Jarad A. Mason, Thomas M. McDonald, Eric D. Bloch, Zoey R. Herm, Tae-Hyun Bae, Jeffrey R. Long

5,389 citations

Journal ArticleDOI
TL;DR: In this paper, various aspects of CCS are reviewed and discussed including the state of the art technologies for CO2 capture, separation, transport, storage, leakage, monitoring, and life cycle analysis.
Abstract: Global warming and climate change concerns have triggered global efforts to reduce the concentration of atmospheric carbon dioxide (CO2). Carbon dioxide capture and storage (CCS) is considered a crucial strategy for meeting CO2 emission reduction targets. In this paper, various aspects of CCS are reviewed and discussed including the state of the art technologies for CO2 capture, separation, transport, storage, leakage, monitoring, and life cycle analysis. The selection of specific CO2 capture technology heavily depends on the type of CO2 generating plant and fuel used. Among those CO2 separation processes, absorption is the most mature and commonly adopted due to its higher efficiency and lower cost. Pipeline is considered to be the most viable solution for large volume of CO2 transport. Among those geological formations for CO2 storage, enhanced oil recovery is mature and has been practiced for many years but its economical viability for anthropogenic sources needs to be demonstrated. There are growing interests in CO2 storage in saline aquifers due to their enormous potential storage capacity and several projects are in the pipeline for demonstration of its viability. There are multiple hurdles to CCS deployment including the absence of a clear business case for CCS investment and the absence of robust economic incentives to support the additional high capital and operating costs of the whole CCS process.

2,181 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the current state-of-the-art of CO2 capture, transport, utilisation and storage from a multi-scale perspective, moving from the global to molecular scales.
Abstract: Carbon capture and storage (CCS) is broadly recognised as having the potential to play a key role in meeting climate change targets, delivering low carbon heat and power, decarbonising industry and, more recently, its ability to facilitate the net removal of CO2 from the atmosphere. However, despite this broad consensus and its technical maturity, CCS has not yet been deployed on a scale commensurate with the ambitions articulated a decade ago. Thus, in this paper we review the current state-of-the-art of CO2 capture, transport, utilisation and storage from a multi-scale perspective, moving from the global to molecular scales. In light of the COP21 commitments to limit warming to less than 2 °C, we extend the remit of this study to include the key negative emissions technologies (NETs) of bioenergy with CCS (BECCS), and direct air capture (DAC). Cognisant of the non-technical barriers to deploying CCS, we reflect on recent experience from the UK's CCS commercialisation programme and consider the commercial and political barriers to the large-scale deployment of CCS. In all areas, we focus on identifying and clearly articulating the key research challenges that could usefully be addressed in the coming decade.

2,088 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive comparison of environmental impacts of carbon capture and storage (CCS) and carbon capture-and-utilization (CCU) technologies.
Abstract: This paper presents a first comprehensive comparison of environmental impacts of carbon capture and storage (CCS) and carbon capture and utilisation (CCU) technologies. Life cycle assessment studies found in the literature have been reviewed for these purposes. In total, 27 studies have been found of which 11 focus on CCS and 16 on CCU. The CCS studies suggest that the global warming potential (GWP) from power plants can be reduced by 63–82%, with the greatest reductions achieved by oxy-fuel combustion in pulverised coal and integrated gasification combined cycle (IGCC) plants and the lowest by post-combustion capture in combined cycle gas turbine (CCGT) plants. However, other environmental impacts such as acidification and human toxicity are higher with than without CCS. For CCU, the GWP varies widely depending on the utilisation option. Mineral carbonation can reduce the GWP by 4–48% compared to no CCU. Utilising CO2 for production of chemicals, specifically, dimethylcarbonate (DMC) reduces the GWP by 4.3 times and ozone layer depletion by 13 times compared to the conventional DMC process. Enhanced oil recovery has the GWP 2.3 times lower compared to discharging CO2 to the atmosphere but acidification is three times higher. Capturing CO2 by microalgae to produce biodiesel has 2.5 times higher GWP than fossil diesel with other environmental impacts also significantly higher. On average, the GWP of CCS is significantly lower than of the CCU options. However, its other environmental impacts are higher compared to CCU except for DMC production which is the worst CCU option overall.

1,048 citations

Journal ArticleDOI
TL;DR: A review of the published knowledge on the oxy-fuel process can be found in this paper, focusing particularly on the combustion fundamentals, i.e. flame temperatures and heat transfer, ignition and burnout, emissions, and fly ash characteristics.

1,042 citations