scispace - formally typeset
Search or ask a question
Author

Chao-Dong Yang

Bio: Chao-Dong Yang is an academic researcher from Huazhong Agricultural University. The author has contributed to research in topics: Amplified fragment length polymorphism & Genetic diversity. The author has an hindex of 2, co-authored 2 publications receiving 28 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: AFLP is an effective, inexpensive, and timesaving technique for the genetic differentiation of the Mei cultivars, as evidenced in this study.
Abstract: Mei flower is one of the most famous ornamental flowers in eastern Asia for its blossoming in early spring. Amplified fragment length polymorphism (AFLP) is one of the most frequently used techniques for analysis of genetic variation and is used herein for the first time inPrunus mume. This research provides a detailed and modified AFLP protocol for Mei genomic DNA digested withEcoRI/PstI restriction endonuclease combinations. The 10 best primer pairs of high polymorphism were screened from 256 primer combinations that could reliably and repetitively distinguish 14 Mei samples and would be suitable for genetic analysis of more cultivars. Ten primer pairs produced up to a total of 524 AFLP bands and up to 233 polymorphic bands. The ratio of polymorphic bands scoped from 35.71% to 59.67%, and the average ratio was 44.46% in the 10 primers. AFLP is an effective, inexpensive, and timesaving technique for the genetic differentiation of the Mei cultivars, as evidenced in this study.

17 citations

Journal ArticleDOI
TL;DR: The genetic diversity and genetic relatedness of mei (Prunus mume) were studied using amplified fragment length polymorphism (AFLP) markers, and there was a strong coincidence of these AFLP-based groupings with the respective morphological characters of the accessions.
Abstract: The genetic diversity and genetic relatedness of mei (Prunus mume; 2n = 16) were studied using amplified fragment length polymorphism (AFLP) markers. Eight EcoRI–PstI AFLP primer combinations were applied to 121 distinct genotypes of mei cultivars and related species. A total of 508 AFLP product bands were produced, of which 382 were polymorphic. The unweighted pair group method with arithmetic averages analysis was carried out based on these AFLP markers. From this analysis, “Qugeng Mei,” “Yan Mei,” “Chaodou Mei,” and mei cultivars were seen to share the same P. mume genetic stem. The AFLP data were able to clearly discriminate P. mume from other species in the genus Prunus, with P. armeniaca aligning as its closest related species. Two major groups and nine subgroups of mei flower were identified, and there was a strong coincidence of these AFLP-based groupings with the respective morphological characters of the accessions. The genetic diversity of mei accessions was greatest in the Yunnan Province and decreased toward Eastern China and Japan, so supporting the hypothesis that the southwest of China represents the genetic diversity center of the species.

12 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A simple and effective fusion primer and nested integrated PCR method (FPNI-PCR) for the identification and cloning of unknown genomic regions flanked known sequences and verified that this novel strategy is an effective, low cost and simple procedure.
Abstract: Background The advent of genomics-based technologies has revolutionized many fields of biological enquiry. However, chromosome walking or flanking sequence cloning is still a necessary and important procedure to determining gene structure. Such methods are used to identify T-DNA insertion sites and so are especially relevant for organisms where large T-DNA insertion libraries have been created, such as rice and Arabidopsis. The currently available methods for flanking sequence cloning, including the popular TAIL-PCR technique, are relatively laborious and slow.

116 citations

Journal ArticleDOI
TL;DR: This study samples wild and domesticated mei to reveal considerable admixture and introgression from other Prunus species and identifies loci associated with floral traits, and identifies significant quantitative traits locus (QTLs) and genomic regions where several genes are positively associated with petal color, stigma color, calyx color, and bud color.
Abstract: Mei (Prunus mume) is an ornamental woody plant that has been domesticated in East Asia for thousands of years. High diversity in floral traits, along with its recent genome sequence, makes mei an ideal model system for studying the evolution of woody plants. Here, we investigate the genetic architecture of floral traits in mei and its domestication history by sampling and resequencing a total of 351 samples including 348 mei accessions and three other Prunus species at an average sequencing depth of 19.3×. Highly-admixed population structure and introgression from Prunus species are identified in mei accessions. Through a genome-wide association study (GWAS), we identify significant quantitative traits locus (QTLs) and genomic regions where several genes, such as MYB108, are positively associated with petal color, stigma color, calyx color, and bud color. Results from this study shed light on the genetic basis of domestication in flowering plants, particularly woody plants.

63 citations

Journal ArticleDOI
28 Mar 2013-PLOS ONE
TL;DR: The genome-wide characterization of simple sequence repeats (SSRs) in the mei genome was performed and a total of 188,149 SSRs were detected, with mei to have the highest density of SSRs, slightly higher than that of strawberry and almost twice as high as that of apple.
Abstract: Because of its popularity as an ornamental plant in East Asia, mei (Prunus mume Sieb. et Zucc.) has received increasing attention in genetic and genomic research with the recent shotgun sequencing of its genome. Here, we performed the genome-wide characterization of simple sequence repeats (SSRs) in the mei genome and detected a total of 188,149 SSRs occurring at a frequency of 794 SSR/Mb. Mononucleotide repeats were the most common type of SSR in genomic regions, followed by di- and tetranucleotide repeats. Most of the SSRs in coding sequences (CDS) were composed of tri- or hexanucleotide repeat motifs, but mononucleotide repeats were always the most common in intergenic regions. Genome-wide comparison of SSR patterns among the mei, strawberry (Fragaria vesca), and apple (Malus×domestica) genomes showed mei to have the highest density of SSRs, slightly higher than that of strawberry (608 SSR/Mb) and almost twice as high as that of apple (398 SSR/Mb). Mononucleotide repeats were the dominant SSR motifs in the three Rosaceae species. Using 144 SSR markers, we constructed a 670 cM-long linkage map of mei delimited into eight linkage groups (LGs), with an average marker distance of 5 cM. Seventy one scaffolds covering about 27.9% of the assembled mei genome were anchored to the genetic map, depending on which the macro-colinearity between the mei genome and Prunus T×E reference map was identified. The framework map of mei constructed provides a first step into subsequent high-resolution genetic mapping and marker-assisted selection for this ornamental species.

41 citations

Journal ArticleDOI
TL;DR: The three-step embryo rescue procedure developed here provides the means for producing plants from very-early embryo stage, thus expanding the prospects for vine-cactus breeding programs.
Abstract: The aim of this study was to develop an efficient methodology to rescue embryos following interspecific crosses in the genus Hylocereus. Crosses between the diploids Hylocereus polyrhizus and H. undatus in both directions were performed. Fertilized ovules carrying embryos at very early pro-embryonic stages were excised from ovaries 5 days after pollination (DAP) and placed on half-strength basal MS medium containing 680 μM glutamine, 0.55 μM α-naphthaleneacetic acid (NAA), 0.45 μM thidiazuron (TDZ) and various concentrations of sucrose. After 30 days in culture, ovules were isolated from the surrounding tissue and transferred to the same fresh medium. Significant differences were found between the main effects (cross and sucrose concentration) in ovule response, i.e., increased ovule size and callus formation. The best responses were obtained in the cross: H. polyrhizus × H. undatus; and sucrose concentration of 0.09 M. In terms of embryo conversion, polyembryony and number of regenerated plants, the highest responses were observed on the culture medium supplemented with 0.17 M sucrose in both interspecific crosses. All tested plants were found to be diploid by flow cytometric analyses. Fluorescent amplified—fragment length polymorphism (fAFLP) confirmed the hybrid origin of the regenerated plants. This study reports on the success of a three-step embryo rescue procedure for Hylocereus species. The procedure developed here provides the means for producing plants from very-early embryo stage, thus expanding the prospects for vine-cactus breeding programs.

38 citations

Journal ArticleDOI
TL;DR: Detailed data is presented on high-quality polymorphic markers identified in parallel between ‘Fenban’ and ‘Kouzi Yudie’ using low-depth whole-genome sequencing that can be useful for constructing high-resolution genetic maps, performing genome-wide association studies, and designing genomic selection strategies in mei.
Abstract: Background Mei (Prunus mume Sieb. et Zucc.) is a famous ornamental plant and fruit crop grown in East Asian countries. Limited genetic resources, especially molecular markers, have hindered the progress of mei breeding projects. Here, we performed low-depth whole-genome sequencing of Prunus mume ‘Fenban’ and Prunus mume ‘Kouzi Yudie’ to identify high-quality polymorphic markers between the two cultivars on a large scale.

28 citations