scispace - formally typeset
Search or ask a question
Author

Chao Huang

Bio: Chao Huang is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Autoencoder & Deep learning. The author has an hindex of 1, co-authored 1 publications receiving 123 citations.

Papers
More filters
Journal ArticleDOI
15 Aug 2019-Methods
TL;DR: This review provides both the exoteric introduction of deep learning, and concrete examples and implementations of its representative applications in bioinformatics, and introduces deep learning in an easy-to-understand fashion.

203 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a comprehensive survey of the most important aspects of DL and including those enhancements recently added to the field is provided, and the challenges and suggested solutions to help researchers understand the existing research gaps.
Abstract: In the last few years, the deep learning (DL) computing paradigm has been deemed the Gold Standard in the machine learning (ML) community. Moreover, it has gradually become the most widely used computational approach in the field of ML, thus achieving outstanding results on several complex cognitive tasks, matching or even beating those provided by human performance. One of the benefits of DL is the ability to learn massive amounts of data. The DL field has grown fast in the last few years and it has been extensively used to successfully address a wide range of traditional applications. More importantly, DL has outperformed well-known ML techniques in many domains, e.g., cybersecurity, natural language processing, bioinformatics, robotics and control, and medical information processing, among many others. Despite it has been contributed several works reviewing the State-of-the-Art on DL, all of them only tackled one aspect of the DL, which leads to an overall lack of knowledge about it. Therefore, in this contribution, we propose using a more holistic approach in order to provide a more suitable starting point from which to develop a full understanding of DL. Specifically, this review attempts to provide a more comprehensive survey of the most important aspects of DL and including those enhancements recently added to the field. In particular, this paper outlines the importance of DL, presents the types of DL techniques and networks. It then presents convolutional neural networks (CNNs) which the most utilized DL network type and describes the development of CNNs architectures together with their main features, e.g., starting with the AlexNet network and closing with the High-Resolution network (HR.Net). Finally, we further present the challenges and suggested solutions to help researchers understand the existing research gaps. It is followed by a list of the major DL applications. Computational tools including FPGA, GPU, and CPU are summarized along with a description of their influence on DL. The paper ends with the evolution matrix, benchmark datasets, and summary and conclusion.

1,084 citations

Journal Article
TL;DR: An efficient deep learning approach is developed that enables spatially and chemically resolved insights into quantum-mechanical observables of molecular systems, and unifies concepts from many-body Hamiltonians with purpose-designed deep tensor neural networks, which leads to size-extensive and uniformly accurate chemical space predictions.
Abstract: Learning from data has led to paradigm shifts in a multitude of disciplines, including web, text and image search, speech recognition, as well as bioinformatics. Can machine learning enable similar breakthroughs in understanding quantum many-body systems? Here we develop an efficient deep learning approach that enables spatially and chemically resolved insights into quantum-mechanical observables of molecular systems. We unify concepts from many-body Hamiltonians with purpose-designed deep tensor neural networks, which leads to size-extensive and uniformly accurate (1 kcal mol−1) predictions in compositional and configurational chemical space for molecules of intermediate size. As an example of chemical relevance, the model reveals a classification of aromatic rings with respect to their stability. Further applications of our model for predicting atomic energies and local chemical potentials in molecules, reliable isomer energies, and molecules with peculiar electronic structure demonstrate the potential of machine learning for revealing insights into complex quantum-chemical systems.

570 citations

Posted ContentDOI
TL;DR: The UDE model augments scientific models with machine-learnable structures for scientifically-based learning and shows how UDEs can be utilized to discover previously unknown governing equations, accurately extrapolate beyond the original data, and accelerate model simulation, all in a time and data-efficient manner.
Abstract: In the context of science, the well-known adage "a picture is worth a thousand words" might well be "a model is worth a thousand datasets." Scientific models, such as Newtonian physics or biological gene regulatory networks, are human-driven simplifications of complex phenomena that serve as surrogates for the countless experiments that validated the models. Recently, machine learning has been able to overcome the inaccuracies of approximate modeling by directly learning the entire set of nonlinear interactions from data. However, without any predetermined structure from the scientific basis behind the problem, machine learning approaches are flexible but data-expensive, requiring large databases of homogeneous labeled training data. A central challenge is reconciling data that is at odds with simplified models without requiring "big data". In this work we develop a new methodology, universal differential equations (UDEs), which augments scientific models with machine-learnable structures for scientifically-based learning. We show how UDEs can be utilized to discover previously unknown governing equations, accurately extrapolate beyond the original data, and accelerate model simulation, all in a time and data-efficient manner. This advance is coupled with open-source software that allows for training UDEs which incorporate physical constraints, delayed interactions, implicitly-defined events, and intrinsic stochasticity in the model. Our examples show how a diverse set of computationally-difficult modeling issues across scientific disciplines, from automatically discovering biological mechanisms to accelerating the training of physics-informed neural networks and large-eddy simulations, can all be transformed into UDE training problems that are efficiently solved by a single software methodology.

391 citations

Journal ArticleDOI
TL;DR: This study provides a starting point for research in determining which techniques for preparing qualitative data for use with neural networks are best, and is the first in-depth look at techniques for working with categorical data in neural networks.
Abstract: This survey investigates current techniques for representing qualitative data for use as input to neural networks. Techniques for using qualitative data in neural networks are well known. However, researchers continue to discover new variations or entirely new methods for working with categorical data in neural networks. Our primary contribution is to cover these representation techniques in a single work. Practitioners working with big data often have a need to encode categorical values in their datasets in order to leverage machine learning algorithms. Moreover, the size of data sets we consider as big data may cause one to reject some encoding techniques as impractical, due to their running time complexity. Neural networks take vectors of real numbers as inputs. One must use a technique to map qualitative values to numerical values before using them as input to a neural network. These techniques are known as embeddings, encodings, representations, or distributed representations. Another contribution this work makes is to provide references for the source code of various techniques, where we are able to verify the authenticity of the source code. We cover recent research in several domains where researchers use categorical data in neural networks. Some of these domains are natural language processing, fraud detection, and clinical document automation. This study provides a starting point for research in determining which techniques for preparing qualitative data for use with neural networks are best. It is our intention that the reader should use these implementations as a starting point to design experiments to evaluate various techniques for working with qualitative data in neural networks. The third contribution we make in this work is a new perspective on techniques for using categorical data in neural networks. We organize techniques for using categorical data in neural networks into three categories. We find three distinct patterns in techniques that identify a technique as determined, algorithmic, or automated. The fourth contribution we make is to identify several opportunities for future research. The form of the data that one uses as an input to a neural network is crucial for using neural networks effectively. This work is a tool for researchers to find the most effective technique for working with categorical data in neural networks, in big data settings. To the best of our knowledge this is the first in-depth look at techniques for working with categorical data in neural networks.

217 citations

Journal ArticleDOI
01 Oct 2020
TL;DR: This review investigates and analyses the most recent methods, developed over three years leading up to 2020, for training, augmentation, feature fusion and extraction, recognising and counting crops, and detecting plant diseases, including how these methods can be harnessed to feed deep classifiers and their effects on classifier accuracy.
Abstract: Deep learning (DL) represents the golden era in the machine learning (ML) domain, and it has gradually become the leading approach in many fields. It is currently playing a vital role in the early detection and classification of plant diseases. The use of ML techniques in this field is viewed as having brought considerable improvement in cultivation productivity sectors, particularly with the recent emergence of DL, which seems to have increased accuracy levels. Recently, many DL architectures have been implemented accompanying visualisation techniques that are essential for determining symptoms and classifying plant diseases. This review investigates and analyses the most recent methods, developed over three years leading up to 2020, for training, augmentation, feature fusion and extraction, recognising and counting crops, and detecting plant diseases, including how these methods can be harnessed to feed deep classifiers and their effects on classifier accuracy.

90 citations