scispace - formally typeset
Search or ask a question
Author

Chao Kai Chou

Bio: Chao Kai Chou is an academic researcher from University of Texas MD Anderson Cancer Center. The author has contributed to research in topics: Signal transduction & Phosphorylation. The author has an hindex of 25, co-authored 48 publications receiving 3475 citations. Previous affiliations of Chao Kai Chou include Asia University (Taiwan) & University of Texas at Austin.

Papers
More filters
Journal ArticleDOI
TL;DR: A cross-talk between PARPi and tumor-associated immunosuppression is demonstrated and evidence is provided to support the combination of PAR Pi and PD-L1 or PD-1 immune checkpoint blockade as a potential therapeutic approach to treat breast cancer.
Abstract: Purpose: To explore whether a cross-talk exists between PARP inhibition and PD-L1/PD-1 immune checkpoint axis, and determine whether blockade of PD-L1/PD-1 potentiates PARP inhibitor (PARPi) in tumor suppression.Experimental Design: Breast cancer cell lines, xenograft tumors, and syngeneic tumors treated with PARPi were assessed for PD-L1 expression by immunoblotting, IHC, and FACS analyses. The phospho-kinase antibody array screen was used to explore the underlying mechanism of PARPi-induced PD-L1 upregulation. The therapeutic efficacy of PARPi alone, PD-L1 blockade alone, or their combination was tested in a syngeneic tumor model. The tumor-infiltrating lymphocytes and tumor cells isolated from syngeneic tumors were analyzed by CyTOF and FACS to evaluate the activity of antitumor immunity in the tumor microenvironment.Results: PARPi upregulated PD-L1 expression in breast cancer cell lines and animal models. Mechanistically, PARPi inactivated GSK3β, which in turn enhanced PARPi-mediated PD-L1 upregulation. PARPi attenuated anticancer immunity via upregulation of PD-L1, and blockade of PD-L1 resensitized PARPi-treated cancer cells to T-cell killing. The combination of PARPi and anti-PD-L1 therapy compared with each agent alone significantly increased the therapeutic efficacy in vivoConclusions: Our study demonstrates a cross-talk between PARPi and tumor-associated immunosuppression and provides evidence to support the combination of PARPi and PD-L1 or PD-1 immune checkpoint blockade as a potential therapeutic approach to treat breast cancer. Clin Cancer Res; 23(14); 3711-20. ©2017 AACR.

638 citations

Journal ArticleDOI
10 Aug 2007-Cell
TL;DR: It is shown that IKKbeta, a major downstream kinase in the TNFalpha signaling pathway, physically interacts with and phosphorylates TSC1 at Ser487 and Ser511, resulting in suppression of T SC1 and activates the mTOR pathway, enhances angiogenesis, and results in tumor development.

628 citations

Journal ArticleDOI
TL;DR: This paper shows for the first time the link between expression of GFP and induction of apoptosis, and should promote studies of G FP cytotoxicity and attempts to isolate new non-toxic mutants ofGFP.

541 citations

Journal ArticleDOI
TL;DR: It is shown that a Cullin 3 (CUL3)-based ubiquitin ligase, Kelch-like ECH-associated protein 1 (KEAP1), is responsible for IKKbeta ubiquitination, and that the dysregulation of KEAP1-mediated IKK beta ubiquitinations may contribute to tumorigenesis.

344 citations

Journal ArticleDOI
TL;DR: Targeting protein glycosylation as a potential strategy to enhance immune checkpoint therapy is suggested, as it remains largely unknown whether the sugar moiety contributes to immunosuppression.

335 citations


Cited by
More filters
01 Apr 2012
TL;DR: The mechanistic target of rapamycin (mTOR) signaling pathway senses and integrates a variety of environmental cues to regulate organismal growth and homeostasis as mentioned in this paper, and is implicated in an increasing number of pathological conditions, including cancer, obesity, type 2 diabetes, and neurodegeneration.
Abstract: The mechanistic target of rapamycin (mTOR) signaling pathway senses and integrates a variety of environmental cues to regulate organismal growth and homeostasis. The pathway regulates many major cellular processes and is implicated in an increasing number of pathological conditions, including cancer, obesity, type 2 diabetes, and neurodegeneration. Here, we review recent advances in our understanding of the mTOR pathway and its role in health, disease, and aging. We further discuss pharmacological approaches to treat human pathologies linked to mTOR deregulation.

6,268 citations

Journal ArticleDOI
13 Apr 2012-Cell
TL;DR: Recent advances in understanding of the mTOR pathway are reviewed and pharmacological approaches to treat human pathologies linked to mTOR deregulation are discussed.

5,792 citations

Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

Journal ArticleDOI
09 Mar 2017-Cell
TL;DR: Recent advances in understanding of mTOR function, regulation, and importance in mammalian physiology are reviewed and how the mTOR signaling network contributes to human disease is highlighted.

4,719 citations

Journal ArticleDOI
01 Oct 2000-Neuron
TL;DR: Each of 25 independently generated transgenic lines expressed XFP in a unique pattern, even though all incorporated identical regulatory elements (from the thyl gene), for example, all retinal ganglion cells or many cortical neurons were XFP positive in some lines, whereas only a few ganglions or only layer 5 cortical pyramids were labeled in others.

2,929 citations