scispace - formally typeset
Search or ask a question
Author

Chao Ma

Bio: Chao Ma is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Electrocatalyst & Superconductivity. The author has an hindex of 18, co-authored 46 publications receiving 2088 citations. Previous affiliations of Chao Ma include Center for Functional Nanomaterials & Tongji University.

Papers
More filters
Journal ArticleDOI
TL;DR: The first synthesis of NiMo nitride nanosheets on a carbon support (NiMoNx/C) is reported, and the high HER electrocatalytic activity of the resulting NiMoNX/C catalyst with low overpotential and small Tafel slope is demonstrated.
Abstract: Hydrogen production through splitting of water has attracted great scientific interest because of its relevance to renewable energy storage and its potential for providing energy without the emission of carbon dioxide. Electrocatalytic systems for H2 generation typically incorporate noble metals such as Pt in the catalysts because of their low overpotential and fast kinetics for driving the hydrogen evolution reaction (HER). However, the high costs and limited world-wide supply of these noble metals make their application in viable commercial processes unattractive. Several non-noble metal materials, such as transition-metal chalcogenides, carbides, and complexes as well as metal alloys have been widely investigated recently, and characterized as catalysts and supports for application in the evolution of hydrogen. Nitrides of early transition-metals have been shown to have excellent catalytic activities in a variety of reactions. One of the primary interests in the applications of nitrides in these reactions was to use them in conjunction with low-cost alternative metals to replace group VIII noble metals. For example, the function of molybdenum nitride as a catalyst for hydrocarbon hydrogenolysis resembles that of platinum. The catalytic and electronic properties of transition-metal nitrides are governed by their bulk and surface structure and stoichiometry. While there is some information concerning the effect of the bulk composition on the catalytic properties of this material, there is currently little known about the effects of the surface nanostructure. Nickel and nickel–molybdenum are known electrocatalysts for hydrogen production in alkaline electrolytes, and in the bulk form they exhibited exchange current densities between 10 6 and 10 4 Acm , compared to 10 3 Acm 2 for Pt. Jaksic et al. postulated a hypo-hyper-d-electronic interactive effect between Ni and Mo that yields the synergism for the HER. Owing to their poor corrosion stability, few studies in acidic media have been reported.With the objective of exploiting the decrease in the overpotential by carrying out the HER in acidic media, we have developed a low-cost, stable, and active molybdenum-nitride-based electrocatalyst for the HER. Guided by the “volcano plot” in which the activity for the evolution of hydrogen as a function of the M H bond strength exhibits an ascending branch followed by a descending branch, peaking at Pt, we designed a material on the molecular scale combining nickel, which binds H weakly, with molybdenum, which binds H strongly. Here we report the first synthesis of NiMo nitride nanosheets on a carbon support (NiMoNx/C), and demonstrate the high HER electrocatalytic activity of the resulting NiMoNx/C catalyst with low overpotential and small Tafel slope. The NiMoNx/C catalyst was synthesized by reduction of a carbon-supported ammonium molybdate [(NH4)6Mo7O24·4H2O] and nickel nitrate (Ni(NO3)2·4H2O) mixture in a tubular oven in H2 at 400 8C, and subsequent reaction with NH3 at 700 8C. During this process, the (NH4)6Mo7O24 and Ni(NO3)2 precursors were reduced to NiMo metal particles by H2, and then they were mildly transformed to NiMoNx nanosheets by reaction with ammonia. The atomic ratio of Ni/Mo was 1/4.7 determined by energy dispersive X-ray spectroscopy (EDX) on the NiMoNx/ C sample. The transmission electron microscopy (TEM) images, as shown in Figure 1a, display NiMo particles that are mainly spherical. The high-resolution TEM image, as shown in the inset of Figure 1a, corroborated the presence of an amorphous 3 to 5 nm Ni/Mo oxide layer (see Figure S4 in the Supporting Information for resolved image), whereas NiMoNx is characterized by thin, flat, and flaky stacks composed of nanosheets with high radial-axial ratios (Figure 1b and Figure S5 in the Supporting Information for a magnified image). Figure 1c shows that some of the nanosheets lay flat on the graphite carbon (as indicated by the black arrows), and some have folded edges that show different layers of NiMoNx sheets (white arrows). The thickness of the sheets ranged from 4 to 15 nm. The average stacking number of sheets measured from Figure 1b is about [*] Dr. W.-F. Chen, Dr. K. Sasaki, Dr. J. T. Muckerman, Dr. R. R. Adzic Chemistry Department, Brookhaven National Laboratory Upton, NY 11973 (USA) E-mail: ksasaki@bnl.gov

1,135 citations

Journal ArticleDOI
TL;DR: This work fabricated compact and smooth Pt hollow nanocrystals that exhibit a sustained enhancement in Pt mass activity for oxygen reduction in acid fuel cells by the hollow-induced lattice contraction, high surface area per mass, and oxidation-resistant surface morphology--a new route for enhancing both the catalysts' activity and durability.
Abstract: Core-shell nanoparticles increasingly are found to be effective in enhancing catalytic performance through the favorable influence of the core materials on the active components at the surface. Yet, sustaining high activities under operating conditions often has proven challenging. Here we explain how differences in the components' diffusivity affect the formation and stability of the core-shell and hollow nanostructures, which we ascribe to the Kirkendall effect. Using Ni nanoparticles as the templates, we fabricated compact and smooth Pt hollow nanocrystals that exhibit a sustained enhancement in Pt mass activity for oxygen reduction in acid fuel cells. This is achieved by the hollow-induced lattice contraction, high surface area per mass, and oxidation-resistant surface morphology--a new route for enhancing both the catalysts' activity and durability. The results indicate challenges and opportunities brought by the nanoscale Kirkendall effect for designing, at the atomic level, nanostructures with a wide range of novel properties.

250 citations

Journal ArticleDOI
TL;DR: A Ranking-system of Anti-Cancer Synergy (RACS) that combines features of targeting networks and transcriptomic profiles, and validate it on three types of cancer, can significantly improve drug synergy prediction and markedly reduce the experimental prescreening of existing drugs for repurposing to cancer treatment.
Abstract: The identification of synergistic chemotherapeutic agents from a large pool of candidates is highly challenging. Here, we present a Ranking-system of Anti-Cancer Synergy (RACS) that combines features of targeting networks and transcriptomic profiles, and validate it on three types of cancer. Using data on human β-cell lymphoma from the Dialogue for Reverse Engineering Assessments and Methods consortium we show a probability concordance of 0.78 compared with 0.61 obtained with the previous best algorithm. We confirm 63.6% of our breast cancer predictions through experiment and literature, including four strong synergistic pairs. Further in vivo screening in a zebrafish MCF7 xenograft model confirms one prediction with strong synergy and low toxicity. Validation using A549 lung cancer cells shows similar results. Thus, RACS can significantly improve drug synergy prediction and markedly reduce the experimental prescreening of existing drugs for repurposing to cancer treatment, although the molecular mechanism underlying particular interactions remains unknown.

113 citations

Journal ArticleDOI
TL;DR: In this paper, the authors synthesized high-activity electrocatalysts for the oxygen reduction reaction comprising a Pt monolayer shell on compact hollow nanoparticles, which were replaced galvanically by Pd and Pd-Au ions.

77 citations

Journal ArticleDOI
Yun Cai1, Chao Ma1, Yimei Zhu1, Jia X. Wang1, Radoslav R. Adzic1 
31 May 2011-Langmuir
TL;DR: Using Br- adsorption/desorption, this work introduces an effective approach to reduce surface roughness, yielding Pd nanoparticles with smoother surfaces and an increased number of (111)-oriented facets, which have a slightly contracted structure and narrow size distribution.
Abstract: Low-coordination sites, including edges, kinks, and defects, play an important role in oxygen-reduction electrocatalysis. Their role was studied experimentally and theoretically for various Pt surfaces. However, the roughness effect on similar-sized nanoparticles that could elucidate the role of low-coordination sites has attracted much less attention, with no studies on Pd nanoparticles. Here, using Br- adsorption/desorption, we introduce an effective approach to reduce surface roughness, yielding Pd nanoparticles with smoother surfaces and an increased number of (111)-oriented facets. The resulting nanoparticles have a slightly contracted structure and narrow size distribution. Pt monolayer catalysts that contain such nanoparticles as the cores showed a 1.5-fold enhancement in specific and Pt mass activities for the oxygen reduction reaction compared with untreated ones. Furthermore, a dramatic increase in durability was observed with bromide-treated Pd3Co cores. These results demonstrate a simple appro...

72 citations


Cited by
More filters
Journal ArticleDOI
13 Jan 2017-Science
TL;DR: A unified theoretical framework highlights the need for catalyst design strategies that selectively stabilize distinct reaction intermediates relative to each other, and opens up opportunities and approaches to develop higher-performance electrocatalysts for a wide range of reactions.
Abstract: BACKGROUND With a rising global population, increasing energy demands, and impending climate change, major concerns have been raised over the security of our energy future. Developing sustainable, fossil-free pathways to produce fuels and chemicals of global importance could play a major role in reducing carbon dioxide emissions while providing the feedstocks needed to make the products we use on a daily basis. One prospective goal is to develop electrochemical conversion processes that can convert molecules in the atmosphere (e.g., water, carbon dioxide, and nitrogen) into higher-value products (e.g., hydrogen, hydrocarbons, oxygenates, and ammonia) by coupling to renewable energy. Electrocatalysts play a key role in these energy conversion technologies because they increase the rate, efficiency, and selectivity of the chemical transformations involved. Today’s electrocatalysts, however, are inadequate. The grand challenge is to develop advanced electrocatalysts with the enhanced performance needed to enable widespread penetration of clean energy technologies. ADVANCES Over the past decade, substantial progress has been made in understanding several key electrochemical transformations, particularly those that involve water, hydrogen, and oxygen. The combination of theoretical and experimental studies working in concert has proven to be a successful strategy in this respect, yielding a framework to understand catalytic trends that can ultimately provide rational guidance toward the development of improved catalysts. Catalyst design strategies that aim to increase the number of active sites and/or increase the intrinsic activity of each active site have been successfully developed. The field of hydrogen evolution, for example, has seen important breakthroughs over the years in the development of highly active non–precious metal catalysts in acid. Notable advancements have also been made in the design of oxygen reduction and evolution catalysts, although there remains substantial room for improvement. The combination of theory and experiment elucidates the remaining challenges in developing further improved catalysts, often involving scaling relations among reactive intermediates. This understanding serves as an initial platform to design strategies to circumvent technical obstacles, opening up opportunities and approaches to develop higher-performance electrocatalysts for a wide range of reactions. OUTLOOK A systematic framework of combining theory and experiment in electrocatalysis helps to uncover broader governing principles that can be used to understand a wide variety of electrochemical transformations. These principles can be applied to other emerging and promising clean energy reactions, including hydrogen peroxide production, carbon dioxide reduction, and nitrogen reduction, among others. Although current paradigms for catalyst development have been helpful to date, a number of challenges need to be successfully addressed in order to achieve major breakthroughs. One important frontier, for example, is the development of both experimental and computational methods that can rapidly elucidate reaction mechanisms on broad classes of materials and in a wide range of operating conditions (e.g., pH, solvent, electrolyte). Such efforts would build on current frameworks for understanding catalysis to provide the deeper insights needed to fine-tune catalyst properties in an optimal manner. The long-term goal is to continue improving the activity and selectivity of these catalysts in order to realize the prospects of using renewable energy to provide the fuels and chemicals that we need for a sustainable energy future.

7,062 citations

Journal ArticleDOI
TL;DR: This review highlights the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER), and summarizes some important examples showing that non-Pt HER electrocatsalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalyst.
Abstract: Sustainable hydrogen production is an essential prerequisite of a future hydrogen economy. Water electrolysis driven by renewable resource-derived electricity and direct solar-to-hydrogen conversion based on photochemical and photoelectrochemical water splitting are promising pathways for sustainable hydrogen production. All these techniques require, among many things, highly active noble metal-free hydrogen evolution catalysts to make the water splitting process more energy-efficient and economical. In this review, we highlight the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER). We review several important kinds of heterogeneous non-precious metal electrocatalysts, including metal sulfides, metal selenides, metal carbides, metal nitrides, metal phosphides, and heteroatom-doped nanocarbons. In the discussion, emphasis is given to the synthetic methods of these HER electrocatalysts, the strategies of performance improvement, and the structure/composition-catalytic activity relationship. We also summarize some important examples showing that non-Pt HER electrocatalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalysts.

4,351 citations

Journal ArticleDOI
TL;DR: The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward a series of key clean energy conversion reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties.
Abstract: A fundamental change has been achieved in understanding surface electrochemistry due to the profound knowledge of the nature of electrocatalytic processes accumulated over the past several decades and to the recent technological advances in spectroscopy and high resolution imaging. Nowadays one can preferably design electrocatalysts based on the deep theoretical knowledge of electronic structures, via computer-guided engineering of the surface and (electro)chemical properties of materials, followed by the synthesis of practical materials with high performance for specific reactions. This review provides insights into both theoretical and experimental electrochemistry toward a better understanding of a series of key clean energy conversion reactions including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward the aforementioned reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties. Also, a rational design of electrocatalysts is proposed starting from the most fundamental aspects of the electronic structure engineering to a more practical level of nanotechnological fabrication.

3,918 citations

Journal ArticleDOI
TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Abstract: Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocat...

3,628 citations