scispace - formally typeset
Search or ask a question
Author

Chao Yie Yang

Bio: Chao Yie Yang is an academic researcher from University of Michigan. The author has contributed to research in topics: XIAP & Small molecule. The author has an hindex of 45, co-authored 108 publications receiving 5679 citations. Previous affiliations of Chao Yie Yang include Shanghai Jiao Tong University & National Institutes of Health.


Papers
More filters
Journal ArticleDOI
Renxiao Wang1, Xueliang Fang1, Yipin Lu1, Chao Yie Yang1, Shaomeng Wang1 
TL;DR: The PDBbind database is developed to provide a comprehensive collection of binding affinities for the protein-ligand complexes in the Protein Data Bank, and a total of 900 complexes were selected to form a "refined set", which is of particular value as a standard data set for docking and scoring studies.
Abstract: We have developed the PDBbind database to provide a comprehensive collection of binding affinities for the protein−ligand complexes in the Protein Data Bank (PDB). This paper gives a full description of the latest version, i.e., version 2003, which is an update to our recently reported work. Out of 23 790 entries in the PDB release No.107 (January 2004), 5897 entries were identified as protein−ligand complexes that meet our definition. Experimentally determined binding affinities (Kd, Ki, and IC50) for 1622 of these were retrieved from the references associated with these complexes. A total of 900 complexes were selected to form a “refined set”, which is of particular value as a standard data set for docking and scoring studies. All of the final data, including binding affinity data, reference citations, and processed structural files, have been incorporated into the PDBbind database accessible on-line at http:// www.pdbbind.org/.

623 citations

Journal ArticleDOI
TL;DR: SD-36 achieves complete and long-lasting tumor regression in multiple xenograft mouse models at well-tolerated dose schedules and is a promising cancer therapeutic strategy.

311 citations

Journal ArticleDOI
TL;DR: A structure-based approach was employed to design a new class of small-molecule inhibitors of Bcl-2 that Potently inhibits cell growth in PC-3 prostate cancer cells with an IC(50) value of 200 nM and effectively induces apoptosis in a dose-dependent manner.
Abstract: A structure-based approach was employed to design a new class of small-molecule inhibitors of Bcl-2. The most potent compound 5 (TW-37) binds to Bcl-2 with a K(i) value of 290 nM and also to Bcl-xL and Mcl-1 with high affinities. Compound 5 potently inhibits cell growth in PC-3 prostate cancer cells with an IC(50) value of 200 nM and effectively induces apoptosis in a dose-dependent manner.

288 citations

Journal ArticleDOI
TL;DR: The design, synthesis, and evaluation of a new class of PROTAC BET degraders are presented, and data establish that compound 23 (BETd-260/ZBC260) is a highly potent and efficacious BET degrader.
Abstract: The bromodomain and extra-terminal (BET) family proteins, consisting of BRD2, BRD3, BRD4, and testis-specific BRDT members, are epigenetic “readers” and play a key role in the regulation of gene transcription. BET proteins are considered to be attractive therapeutic targets for cancer and other human diseases. Recently, heterobifunctional small-molecule BET degraders have been designed based upon the proteolysis targeting chimera (PROTAC) concept to induce BET protein degradation. Herein, we present our design, synthesis, and evaluation of a new class of PROTAC BET degraders. One of the most promising compounds, 23, effectively degrades BRD4 protein at concentrations as low as 30 pM in the RS4;11 leukemia cell line, achieves an IC50 value of 51 pM in inhibition of RS4;11 cell growth and induces rapid tumor regression in vivo against RS4;11 xenograft tumors. These data establish that compound 23 (BETd-260/ZBC260) is a highly potent and efficacious BET degrader.

279 citations

Journal ArticleDOI
TL;DR: The discovery of highly potent PROTAC degraders of androgen receptor (AR), as exemplified by compound 34 (ARD-69), capable of reducing the AR protein level by >95% in these prostate cancer cell lines and effectively suppressing AR-regulated gene expression may ultimately lead to a new therapy for AR+, castration-resistant prostate cancer.
Abstract: We report herein the discovery of highly potent PROTAC degraders of androgen receptor (AR), as exemplified by compound 34 (ARD-69). ARD-69 induces degradation of AR protein in AR-positive prostate cancer cell lines in a dose- and time-dependent manner. ARD-69 achieves DC50 values of 0.86, 0.76, and 10.4 nM in LNCaP, VCaP, and 22Rv1 AR+ prostate cancer cell lines, respectively. ARD-69 is capable of reducing the AR protein level by >95% in these prostate cancer cell lines and effectively suppressing AR-regulated gene expression. ARD-69 potently inhibits cell growth in these AR-positive prostate cancer cell lines and is >100 times more potent than AR antagonists. A single dose of ARD-69 effectively reduces the level of AR protein in xenograft tumor tissue in mice. Further optimization of ARD-69 may ultimately lead to a new therapy for AR+, castration-resistant prostate cancer.

241 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: AutoDock Vina achieves an approximately two orders of magnitude speed‐up compared with the molecular docking software previously developed in the lab, while also significantly improving the accuracy of the binding mode predictions, judging by tests on the training set used in AutoDock 4 development.
Abstract: AutoDock Vina, a new program for molecular docking and virtual screening, is presented. AutoDock Vina achieves an approximately two orders of magnitude speed-up compared with the molecular docking software previously developed in our lab (AutoDock 4), while also significantly improving the accuracy of the binding mode predictions, judging by our tests on the training set used in AutoDock 4 development. Further speed-up is achieved from parallelism, by using multithreading on multicore machines. AutoDock Vina automatically calculates the grid maps and clusters the results in a way transparent to the user.

20,059 citations

Journal ArticleDOI
TL;DR: ChEMBL is an Open Data database containing binding, functional and ADMET information for a large number of drug-like bioactive compounds to maximize their quality and utility across a wide range of chemical biology and drug-discovery research problems.
Abstract: ChEMBL is an Open Data database containing binding, functional and ADMET information for a large number of drug-like bioactive compounds. These data are manually abstracted from the primary published literature on a regular basis, then further curated and standardized to maximize their quality and utility across a wide range of chemical biology and drug-discovery research problems. Currently, the database contains 5.4 million bioactivity measurements for more than 1 million compounds and 5200 protein targets. Access is available through a web-based interface, data downloads and web services at: https://www.ebi.ac.uk/chembldb.

2,956 citations

Journal ArticleDOI
TL;DR: A number of substructural features which can help to identify compounds that appear as frequent hitters (promiscuous compounds) in many biochemical high throughput screens are described.
Abstract: This report describes a number of substructural features which can help to identify compounds that appear as frequent hitters (promiscuous compounds) in many biochemical high throughput screens. The compounds identified by such substructural features are not recognized by filters commonly used to identify reactive compounds. Even though these substructural features were identified using only one assay detection technology, such compounds have been reported to be active from many different assays. In fact, these compounds are increasingly prevalent in the literature as potential starting points for further exploration, whereas they may not be.

2,791 citations

Journal ArticleDOI
TL;DR: The authors review the use of MM/PBSA and MM/GBSA methods to calculate ligand-binding affinities, with an emphasis on calibration, testing and validation, as well as attempts to improve the methods, rather than on specific applications.
Abstract: Introduction: The molecular mechanics energies combined with the Poisson–Boltzmann or generalized Born and surface area continuum solvation (MM/PBSA and MM/GBSA) methods are popular approaches to estimate the free energy of the binding of small ligands to biological macromolecules. They are typically based on molecular dynamics simulations of the receptor–ligand complex and are therefore intermediate in both accuracy and computational effort between empirical scoring and strict alchemical perturbation methods. They have been applied to a large number of systems with varying success.Areas covered: The authors review the use of MM/PBSA and MM/GBSA methods to calculate ligand-binding affinities, with an emphasis on calibration, testing and validation, as well as attempts to improve the methods, rather than on specific applications.Expert opinion: MM/PBSA and MM/GBSA are attractive approaches owing to their modular nature and that they do not require calculations on a training set. They have been used success...

2,480 citations

Journal ArticleDOI
07 Aug 2006-Oncogene
TL;DR: Understanding the molecular events that regulate apoptosis in response to anticancer chemotherapy, and how cancer cells evade apoptotic death, provides novel opportunities for a more rational approach to develop molecular-targeted therapies for combating cancer.
Abstract: Apoptosis or programmed cell death is a key regulator of physiological growth control and regulation of tissue homeostasis. One of the most important advances in cancer research in recent years is the recognition that cell death mostly by apoptosis is crucially involved in the regulation of tumor formation and also critically determines treatment response. Killing of tumor cells by most anticancer strategies currently used in clinical oncology, for example, chemotherapy, γ-irradiation, suicide gene therapy or immunotherapy, has been linked to activation of apoptosis signal transduction pathways in cancer cells such as the intrinsic and/or extrinsic pathway. Thus, failure to undergo apoptosis may result in treatment resistance. Understanding the molecular events that regulate apoptosis in response to anticancer chemotherapy, and how cancer cells evade apoptotic death, provides novel opportunities for a more rational approach to develop molecular-targeted therapies for combating cancer.

2,125 citations