scispace - formally typeset
Search or ask a question
Author

Chao Zhang

Bio: Chao Zhang is an academic researcher from Fourth Military Medical University. The author has contributed to research in topics: FEV1/FVC ratio & Lung volumes. The author has an hindex of 2, co-authored 2 publications receiving 8 citations.

Papers
More filters
Journal ArticleDOI
20 Dec 2018-PLOS ONE
TL;DR: The results indicated the potential of EIT to evaluate the degree of obstruction in patients with obstructive ventilatory defect on the global and regional level.
Abstract: Background Electrical impedance tomography is a continuous imaging method capable of measuring lung volume changes. The purpose of this study was to examine whether EIT was capable of evaluating the degree of obstructive ventilatory defect (OVD) on the global and regional level. Methods 41 healthy subjects with no lung diseases and 67 subjects suffering from obstructive lung diseases were examined using EIT and spirometry during forced vital capacity (FVC) maneuver. The subjects were divided into control group (n = 41), early airway obstruction group (n = 26), mild group (n = 17), moderate group (n = 16) and severe group (n = 8) according to the degree of obstruction. Forced expiratory volume in 1 second (FEV1) and FEV1/FVC were determined by EIT. The mode index (MI) was proposed to evaluate the degree of global and regional obstruction; the effectiveness of MI was validated by evaluating posture related change of lung emptying capacity in sitting and supine postures; the degree of regional obstruction was determined according to the cut-off values of MI obtained from receiver operating characteristic (ROC) analysis; regional obstruction was located in the four-quadrant region of interest (ROI) and the contour-map ROI with contour lines at the cut-off values of MI. Results Significant differences were found between different groups (P<0.05) and the global MI was 0.93±0.03, 0.86±0.05, 0.81±0.09, 0.73±0.09 and 0.60±0.11 (mean ±SD), respectively. The cut-off MI value was 0.90, 0.83, 0.77, and 0.65, respectively. Conclusion The results indicated the potential of EIT to evaluate the degree of obstruction in patients with obstructive ventilatory defect on the global and regional level.

8 citations

Journal ArticleDOI
TL;DR: Electrical impedance tomography (EIT) was able to sensitively detect hemothorax as small as 10 ml in volume, as well as its location, and demonstrated that EIT has a unique potential for early diagnosis and continuous monitoring of hemothsorax in clinical practice.
Abstract: Hemothorax is a serious medical condition that can be life-threatening if left untreated. Early diagnosis and timely treatment are of great importance to produce favorable outcome. Although currently available diagnostic techniques, e.g., chest radiography, ultrasonography, and CT, can accurately detect hemothorax, delayed hemothorax cannot be identified early because these examinations are often performed on patients until noticeable symptoms manifest. Therefore, for early detection of delayed hemothorax, real-time monitoring by means of a portable and noninvasive imaging technique is needed. In this study, we employed electrical impedance tomography (EIT) to detect the onset of hemothorax in real time on eight piglet hemothorax models. The models were established by injection of 60 ml fresh autologous blood into the pleural cavity, and the subsequent development of hemothorax was monitored continuously. The results showed that EIT was able to sensitively detect hemothorax as small as 10 ml in volume, as well as its location. Also, the development of hemothorax over a range of 10 ml up to 60 ml was well monitored in real time, with a favorable linear relationship between the impedance change in EIT images and the volume of blood injected. These findings demonstrated that EIT has a unique potential for early diagnosis and continuous monitoring of hemothorax in clinical practice, providing medical staff valuable information for prompt identification and treatment of delayed hemothorax.

4 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of wearable and portable UV sensors for monitoring personal UV exposure, including a discussion of their unique advantages and limitations, is provided in this paper, where some of the sensors can be worn as personal health monitors, which promote solar exposure protection.
Abstract: Sunlight is one of the main environmental resources that keeps all the organisms alive on earth. The ultraviolet (UV) radiation from the sun is essential for vitamin D synthesis in the human body, which is crucial for bone and muscle health. In addition, sun exposure also helps to reduce the risk of some cardiovascular diseases and cancers. However, excessive UV exposure can lead to adverse effects, including some eye diseases, premature aging, sunburn and skin cancers. The solar UV irradiance itself depends on many environmental factors. In fact, the UV index reported in weather forecasts is an estimation under cloudless conditions. Personal UV exposure also depends on one's outdoor activities and habits. Furthermore, the UV intake depends on the skin sensitivity. Therefore, there is a need for research into monitoring the optimal daily UV exposure for health benefits, without developing potential health risks. To facilitate the monitoring of solar UV intensity and cumulative dose, a variety of UV sensors have been developed in the past few decades and many are commercially available. Examples of sensors being marketed are: portable UV dosimeter, wearable UV radiometer, personal UV monitor, and handheld Solarmeter®. Some of the UV sensors can be worn as personal health monitors, which promote solar exposure protection. The paper provides a comprehensive review of the wearable and portable UV sensors for monitoring personal UV exposure, including a discussion of their unique advantages and limitations. Proposals are also presented for possible future research into reliable and practical UV sensors for personal UV exposure monitoring.

32 citations

Journal ArticleDOI
TL;DR: The past, present and future of EIT in China are introduced and discussed and the main challenges for promoting clinical use of E IT are the financial cost and the education of personnel.
Abstract: Chinese scientists and researchers have a long history with electrical impedance tomography (EIT), which can be dated back to the 1980s. No commercial EIT devices for chest imaging were available until the year 2014 when the first device received its approval from the China Food and Drug Administration. Ever since then, clinical research and daily applications have taken place in Chinese hospitals. Up to this date (2019.11) 47 hospitals have been equipped with 50 EIT devices. Twenty-three SCI publications are recorded and a further 21 clinical trials are registered. Thoracic EIT is mainly used in patients before or after surgery, or in intensive care units (ICU). Application fields include the development of strategies for protective lung ventilation (e.g. tidal volume and positive end-expiratory pressure (PEEP) titration, recruitment, choice of ventilation mode and weaning from ventilator), regional lung perfusion monitoring, perioperative monitoring, and potential feedback for rehabilitation. The main challenges for promoting clinical use of EIT are the financial cost and the education of personnel. In this review, the past, present and future of EIT in China are introduced and discussed.

31 citations

Journal ArticleDOI
TL;DR: The purpose of this paper is to review state-ofthe-art methods including both algorithms and hardware implementations in EIT, and offers some insights on classification and comparison for the advanced reconstruction algorithms in mainstream.
Abstract: In recent years, electrical impedance tomography (EIT) has attracted intensive interests due to its noninvasive, ionizing radiation-free, and low-cost advantages, which is promising for both biomedical imaging and industry nondestructive tests. The purpose of this paper is to review state-ofthe-art methods including both algorithms and hardware implementations in EIT. More specifically, for the advanced reconstruction algorithms in mainstream, we offer some insights on classification and comparison. As for the measurement equipment, the structure, configuration modes, and typical systems are reviewed. Furthermore, we discuss the limitations and challenges in EIT technique, such as low-spatial resolution and nonlinear-inversion problems, where future directions, such as solving EIT problems with deep learning, have also been addressed.

23 citations

Journal ArticleDOI
TL;DR: Electrical impedance tomography has demonstrated potential as an alternative or supplement to well-established measurement modalities to monitor the progression of obstructive lung diseases, although the existing literature lacks prediction values as references and lacks clinical outcome evidence.
Abstract: Electrical impedance tomography (EIT) is a functional radiation-free imaging technique that measures regional lung ventilation distribution by calculating the impedance changes in the corresponding regions. The aim of the present review was to summarize the current literature concerning the methodologies and applications of EIT in lung diseases with flow limitation and hyperinflation. PubMed was searched up to May 2020 to identify studies investigating the use of EIT in patients with asthma, bronchiectasis, bronchitis, bronchiolitis, chronic obstructive pulmonary disease, and cystic fibrosis. The extracted data included study design, EIT methodologies, interventions, validation and comparators, population characteristics, and key findings. Of the 44 included studies, seven were related to simulation, animal experimentation, or reconstruction algorithm development with evaluation on patients; 27 studies had the primary objective of validating EIT technique and measures including regional ventilation distribution, regional EIT-spirometry parameters, end-expiratory lung impedance, and regional time constants; and 10 studies had the primary objective of applying EIT to monitor the response to therapeutic interventions, including various ventilation supports, patient repositioning, and airway suctioning. In pediatric and adult patients, EIT has been successfully validated for assessing spatial and temporal ventilation distribution, measuring changes in lung volume and flow, and studying regional respiratory mechanics. EIT has also demonstrated potential as an alternative or supplement to well-established measurement modalities (e.g., conventional pulmonary function testing) to monitor the progression of obstructive lung diseases, although the existing literature lacks prediction values as references and lacks clinical outcome evidence.

16 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the research progress of electrical impedance tomography (EIT), image reconstruction algorithms, hardware system design, and clinical applications used in the treatment of lung diseases.
Abstract: Medical imaging can intuitively show people the internal structure, morphological information, and organ functions of the organism, which is one of the most important inspection methods in clinical medical diagnosis. Currently used medical imaging methods can only be applied to some diagnostic occasions after qualitative lesions have been generated, and the general imaging technology is usually accompanied by radiation and other conditions. However, electrical impedance tomography has the advantages of being noninvasive and non-radiative. EIT (Electrical Impedance Tomography) is also widely used in the early diagnosis and treatment of some diseases because of these advantages. At present, EIT is relatively mature and more and more image reconstruction algorithms are used to improve imaging resolution. Hardware technology is also developing rapidly, and the accuracy of data collection and processing is continuously improving. In terms of clinical application, EIT has also been used for pathological treatment of lungs, the brain, and the bladder. In the future, EIT has a good application prospect in the medical field, which can meet the needs of real-time, long-term monitoring and early diagnosis. Aiming at the application of EIT in the treatment of lung pathology, this article reviews the research progress of EIT, image reconstruction algorithms, hardware system design, and clinical applications used in the treatment of lung diseases. Through the research and introduction of several core components of EIT technology, it clarifies the characteristics of EIT system complexity and its solutions, provides research ideas for subsequent research, and once again verifies the broad development prospects of EIT technology in the future.

9 citations