scispace - formally typeset
Search or ask a question
Author

Chaoqun Wu

Bio: Chaoqun Wu is an academic researcher from Cleveland Clinic. The author has contributed to research in topics: Heme & Nitric oxide synthase. The author has an hindex of 10, co-authored 10 publications receiving 1809 citations. Previous affiliations of Chaoqun Wu include Cleveland Clinic Lerner Research Institute & Scripps Research Institute.

Papers
More filters
Journal ArticleDOI
27 Mar 1998-Science
TL;DR: Crystal structures of the murine cytokine-inducible nitric oxide synthase oxygenase dimer with active-center water molecules, the substrate L-arginine (L-Arg), or product analog thiocitrulline reveal how dimerization, cofactor tetrahydrobiopterin, and L-Arg binding complete the catalytic center for synthesis of the essential biological signal and cytotoxin nitricoxide.
Abstract: Crystal structures of the murine cytokine-inducible nitric oxide synthase oxygenase dimer with active-center water molecules, the substrate l-arginine (l-Arg), or product analog thiocitrulline reveal how dimerization, cofactor tetrahydrobiopterin, and l-Arg binding complete the catalytic center for synthesis of the essential biological signal and cytotoxin nitric oxide. Pterin binding refolds the central interface region, recruits new structural elements, creates a 30 angstrom deep active-center channel, and causes a 35° helical tilt to expose a heme edge and the adjacent residue tryptophan-366 for likely reductase domain interactions and caveolin inhibition. Heme propionate interactions with pterin and l-Arg suggest that pterin has electronic influences on heme-bound oxygen. l-Arginine binds to glutamic acid–371 and stacks with heme in an otherwise hydrophobic pocket to aid activation of heme-bound oxygen by direct proton donation and thereby differentiate the two chemical steps of nitric oxide synthesis.

646 citations

Journal ArticleDOI
17 Oct 1997-Science
TL;DR: Juxtaposed hydrophobic O2- and polar L-arginine-binding sites occupied by imidazole and aminoguanidine, respectively, provide a template for designing dual-function inhibitors and imply substrate-assisted catalysis.
Abstract: The nitric oxide synthase oxygenase domain (NOS_(ox)) oxidizes arginine to synthesize the cellular signal and defensive cytotoxin nitric oxide (NO). Crystal structures determined for cytokine-inducible NOS_(ox) reveal an unusual fold and heme environment for stabilization of activated oxygen intermediates key for catalysis. A winged β sheet engenders a curved α-β domain resembling a baseball catcher's mitt with heme clasped in the palm. The location of exposed hydrophobic residues and the results of mutational analysis place the dimer interface adjacent to the heme-binding pocket. Juxtaposed hydrophobic O_2- and polarL-arginine–binding sites occupied by imidazole and aminoguanidine, respectively, provide a template for designing dual-function inhibitors and imply substrate-assisted catalysis.

347 citations

Journal ArticleDOI
TL;DR: It is proposed that cav-1 binding to eNOS reductase compromises its ability to bind CaM and to donate electrons to the eN OS heme, thereby inhibiting NO synthesis.

152 citations

Journal ArticleDOI
TL;DR: Results suggest that residues 66-114 of iNOSox are involved in productive H4biopterin interaction and subunit dimerization, and appears to stabilize the protein structure in this region, and through doing so activates iN OS for NO synthesis.
Abstract: The oxygenase domain of inducible NO synthase (residues 1−498, iNOSox) is the enzyme's catalytic center. Its active form is a homodimer that contains heme and tetrahydrobiopterin (H4biopterin) and binds l-arginine [Ghosh, D. K., & Stuehr, D. J. (1995) Biochemistry 34, 801]. To help identify protein residues involved in prosthetic group and dimeric interaction, we expressed H4biopterin-free iNOSox in Escherichia coli. The iNOSox was 80% dimeric but contained a low-spin heme iron that bound DTT as a sixth ligand. The iNOSox bound H4biopterin or l-arginine with high affinity, which displaced DTT from the heme and caused spectral changes consistent with a closing up of the heme pocket. The H4biopterin-replete iNOSox could catalyze conversion of Nω-hydroxyarginine to citrulline and NO in a H2O2-supported reaction. Limited trypsinolysis of the H4biopterin-free iNOSox dimer cut the protein at a single site in its N-terminal region (K117). H4biopterin protected against the cleavage whereas l-arginine did not. The...

151 citations

Journal ArticleDOI
TL;DR: In this paper, pterin-free inducible NOS (iNOS) and iNOS reconstituted with eight different tetrahydro- or dihydropterins were investigated.
Abstract: The nitric oxide synthases (NOS) are the only heme-containing enzymes that require tetrahydrobiopterin (BH4) as a cofactor. Previous studies indicate that only the fully reduced (i.e., tetrahydro) form of BH4 can support NO synthesis. Here, we characterize pterin-free inducible NOS (iNOS) and iNOS reconstituted with eight different tetrahydro- or dihydropterins to elucidate how changes in pterin side-chain structure and ring oxidation state regulate iNOS. Seven different enzyme properties that are important for catalysis and are thought to involve pterin were studied. Only two properties were found to depend on pterin oxidation state (i.e., they required fully reduced tetrahydropterins) and were independent of side chain structure: NO synthesis and the ability to increase heme-dependent NADPH oxidation in response to substrates. In contrast, five properties were exclusively dependent on pterin side-chain structure or stereochemistry and were independent of pterin oxidation state: pterin binding affinity, and its ability to shift the heme iron to its high-spin state, stabilize the ferrous heme iron coordination structure, support heme iron reduction, and promote iNOS subunit assembly into a dimer. These results clarify how structural versus redox properties of the pterin impact on its multifaceted role in iNOS function. In addition, the data reveal that during NO synthesis all pterin-dependent steps up to and including heme iron reduction can take place independent of the pterin ring oxidation state, indicating that the requirement for fully reduced pterin occurs at a point in catalysis beyond heme iron reduction.

148 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review concentrates on advances in nitric oxide synthase (NOS) structure, function and inhibition made in the last seven years, during which time substantial advances have been made in the authors' understanding of this enzyme family.
Abstract: This review concentrates on advances in nitric oxide synthase (NOS) structure, function and inhibition made in the last seven years, during which time substantial advances have been made in our understanding of this enzyme family. There is now information on the enzyme structure at all levels from primary (amino acid sequence) to quaternary (dimerization, association with other proteins) structure. The crystal structures of the oxygenase domains of inducible NOS (iNOS) and vascular endothelial NOS (eNOS) allow us to interpret other information in the context of this important part of the enzyme, with its binding sites for iron protoporphyrin IX (haem), biopterin, L-arginine, and the many inhibitors which interact with them. The exact nature of the NOS reaction, its mechanism and its products continue to be sources of controversy. The role of the biopterin cofactor is now becoming clearer, with emerging data implicating one-electron redox cycling as well as the multiple allosteric effects on enzyme activity. Regulation of the NOSs has been described at all levels from gene transcription to covalent modification and allosteric regulation of the enzyme itself. A wide range of NOS inhibitors have been discussed, interacting with the enzyme in diverse ways in terms of site and mechanism of inhibition, time-dependence and selectivity for individual isoforms, although there are many pitfalls and misunderstandings of these aspects. Highly selective inhibitors of iNOS versus eNOS and neuronal NOS have been identified and some of these have potential in the treatment of a range of inflammatory and other conditions in which iNOS has been implicated.

3,418 citations

Journal ArticleDOI
TL;DR: Nitric oxide (NO), the smallest signalling molecule known, is produced by three isoforms of NO synthase (NOS), which can be expressed in many cell types in response to lipopolysaccharide, cytokines, or other agents.
Abstract: Nitric oxide (NO), the smallest signalling molecule known, is produced by three isoforms of NO synthase (NOS; EC 1.14.13.39). They all utilize l-arginine and molecular oxygen as substrates and require the cofactors reduced nicotinamide-adenine-dinucleotide phosphate (NADPH), flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), and (6R-)5,6,7,8-tetrahydrobiopterin (BH(4)). All NOS bind calmodulin and contain haem. Neuronal NOS (nNOS, NOS I) is constitutively expressed in central and peripheral neurons and some other cell types. Its functions include synaptic plasticity in the central nervous system (CNS), central regulation of blood pressure, smooth muscle relaxation, and vasodilatation via peripheral nitrergic nerves. Nitrergic nerves are of particular importance in the relaxation of corpus cavernosum and penile erection. Phosphodiesterase 5 inhibitors (sildenafil, vardenafil, and tadalafil) require at least a residual nNOS activity for their action. Inducible NOS (NOS II) can be expressed in many cell types in response to lipopolysaccharide, cytokines, or other agents. Inducible NOS generates large amounts of NO that have cytostatic effects on parasitic target cells. Inducible NOS contributes to the pathophysiology of inflammatory diseases and septic shock. Endothelial NOS (eNOS, NOS III) is mostly expressed in endothelial cells. It keeps blood vessels dilated, controls blood pressure, and has numerous other vasoprotective and anti-atherosclerotic effects. Many cardiovascular risk factors lead to oxidative stress, eNOS uncoupling, and endothelial dysfunction in the vasculature. Pharmacologically, vascular oxidative stress can be reduced and eNOS functionality restored with renin- and angiotensin-converting enzyme-inhibitors, with angiotensin receptor blockers, and with statins.

3,077 citations

Journal ArticleDOI
TL;DR: Alkane hydroxylation proceeds by TSR,70-72,120 in which the HS mechanism is truly stepwise with a finite lifetime for the radical intermediate, whereas the LS mechanism is effectively concerted with an ultrashort lifetime forThe radical intermediate.
Abstract: ion phase that leads to an alkyl radical coordinated to the iron-hydroxo complex by a weak OH---C hydrogen bond, labeled as CI; (ii) an alkyl (or OH) rotation phase whereby the alkyl group achieves a favorable orientation for rebound; and (iii) a rebound phase that leads to C-O bond making and the ferric-alcohol complexes, 4,2P. The two profiles remain close in energy throughout the first two phases and then bifurcate. Whereas the HS state exhibits a significant barrier and a genuine TS for rebound, in the LS state, once the right orientation of the alkyl group is achieved, the LS rebound proceeds in a virtually barrier-free fashion to the alcohol. As such, alkane hydroxylation proceeds by TSR,70-72,120 in which the HS mechanism is truly stepwise with a finite lifetime for the radical intermediate, whereas the LS mechanism is effectively concerted with an ultrashort lifetime for the radical intermediate. Subsequent studies of ethane and camphor hydroxylation by the Yoshizawa group117,181-183 arrived at basically the same conclusion, that the mechanism is typified by TSR. The differences between the results of Shaik et al.130,173,177-180 and Yoshizawa et al.117,181-183 were rationalized recently71,72 and shown to arise owing to technical problems and the choice of the mercaptide ligand,117,181-183 which is a powerful electron donor and is too far from the representation of cysteine in the protein environment. The most recent study of camphor hydroxylation, which was done at a higher quality,117 converged to the picture reported by Shaik et al.130,173,177-180 and shows a stepwise HS process with a barrier of more than 3 kcal/mol for C-O bond formation by rebound of the camphoryl radical vis-à-vis an effectively concerted LS process for which this barrier is 0.7 kcal mol-1 and is the rotational barrier for reaching the rebound position. By referring to Figure 21, it is possible to rationalize the clock data of Newcomb in a simple manner. The apparent lifetimes are based on the assumption that there is a single state that leads to the reaction, such that the radical lifetime can be quantitated from the rate constant of free radical rearrangement and the ratio of rearranged to unrearranged alcohol product. However, in TSR, the rearranged (R) product is formed only/mainly on the HS surface, while the unrearranged (U) product is formed mainly on Figure 20. Formal descriptions of iron(III)-peroxo, iron(III)-hydroperoxo, and iron(V)-oxo species with indication of the negative charges. The roles “electrophile” or “nucleophile” are assigned according to the charge type. Reprinted with permission from ref 7. Copyright 2000 Springer-Verlag Heidelberg. 3964 Chemical Reviews, 2004, Vol. 104, No. 9 Meunier et al.

2,002 citations

Journal ArticleDOI
TL;DR: This report summarizes some of the current information regarding NO synthase structure-function, reaction mechanism, control of catalysis, and protein interactions.

1,209 citations

Journal ArticleDOI
Fugen Aktan1
TL;DR: The prevention of the overproduction of NO in the living organism through control of regulatory pathways may assist in the treatment of high NO-mediated disorders without changing physiological levels of NO.

1,170 citations