scispace - formally typeset
Search or ask a question
Author

Charalambos Konstantinou

Bio: Charalambos Konstantinou is an academic researcher from King Abdullah University of Science and Technology. The author has contributed to research in topics: Computer science & Smart grid. The author has an hindex of 15, co-authored 89 publications receiving 934 citations. Previous affiliations of Charalambos Konstantinou include York University & Florida State University.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
16 Mar 2016
TL;DR: The ICS cybersecurity landscape is explored including the key principles and unique aspects of ICS operation, a brief history of cyberattacks on ICS, an overview of I CS security assessment, and a survey of “uniquely-ICS” testbeds that capture the interactions between the various layers of an ICS.
Abstract: Industrial control systems (ICSs) are transitioning from legacy-electromechanical-based systems to modern information and communication technology (ICT)-based systems creating a close coupling between cyber and physical components. In this paper, we explore the ICS cybersecurity landscape including: 1) the key principles and unique aspects of ICS operation; 2) a brief history of cyberattacks on ICS; 3) an overview of ICS security assessment; 4) a survey of “uniquely-ICS” testbeds that capture the interactions between the various layers of an ICS; and 5) current trends in ICS attacks and defenses.

278 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a comprehensive overview of the cyber-physical energy systems (CPS) security landscape with an emphasis on CPES, and demonstrate a threat modeling methodology to accurately represent the CPS elements, their interdependencies, as well as the possible attack entry points and system vulnerabilities.
Abstract: Cyber-physical systems (CPS) are interconnected architectures that employ analog and digital components as well as communication and computational resources for their operation and interaction with the physical environment. CPS constitute the backbone of enterprise (e.g., smart cities), industrial (e.g., smart manufacturing), and critical infrastructure (e.g., energy systems). Thus, their vital importance, interoperability, and plurality of computing devices make them prominent targets for malicious attacks aiming to disrupt their operations. Attacks targeting cyber-physical energy systems (CPES), given their mission-critical nature within the power grid infrastructure, can lead to disastrous consequences. The security of CPES can be enhanced by leveraging testbed capabilities in order to replicate and understand power systems operating conditions, discover vulnerabilities, develop security countermeasures, and evaluate grid operation under fault-induced or maliciously constructed scenarios. Adequately modeling and reproducing the behavior of CPS could be a challenging task. In this paper, we provide a comprehensive overview of the CPS security landscape with an emphasis on CPES. Specifically, we demonstrate a threat modeling methodology to accurately represent the CPS elements, their interdependencies, as well as the possible attack entry points and system vulnerabilities. Leveraging the threat model formulation, we present a CPS framework designed to delineate the hardware, software, and modeling resources required to simulate the CPS and construct high-fidelity models that can be used to evaluate the system’s performance under adverse scenarios. The system performance is assessed using scenario-specific metrics, while risk assessment enables the system vulnerability prioritization factoring the impact on the system operation. The overarching framework for modeling, simulating, assessing, and mitigating attacks in a CPS is illustrated using four representative attack scenarios targeting CPES. The key objective of this paper is to demonstrate a step-by-step process that can be used to enact in-depth cybersecurity analyses, thus leading to more resilient and secure CPS.

105 citations

Proceedings ArticleDOI
25 May 2015
TL;DR: This paper focuses on security and privacy concerns at different levels of the composition and presents system level solutions for ensuring the security and trust of modern cyber-physical systems.
Abstract: A cyber-physical system (CPS) is a composition of independently interacting components, including computational elements, communications and control systems. Applications of CPS institute at different levels of integration, ranging from nation-wide power grids, to medium scale, such as the smart home, and small scale, e.g. ubiquitous health care systems including implantable medical devices. Cyber-physical systems primarily transmute how we interact with the physical world, with each system requiring different levels of security based on the sensitivity of the control system and the information it carries. Considering the remarkable progress in CPS technologies during recent years, advancement in security and trust measures is much needed to counter the security violations and privacy leakage of integration elements. This paper focuses on security and privacy concerns at different levels of the composition and presents system level solutions for ensuring the security and trust of modern cyber-physical systems.

76 citations

Proceedings ArticleDOI
02 Nov 2015
TL;DR: This work proposes ConFirm, a low-cost technique to detect malicious modifications in the firmware of embedded control systems by measuring the number of low-level hardware events that occur during the execution of the firmware.
Abstract: Critical infrastructure components nowadays use microprocessor-based embedded control systems. It is often infeasible, however, to employ the same level of security measures used in general purpose computing systems, due to the stringent performance and resource constraints of embedded control systems. Furthermore, as software sits atop and relies on the firmware for proper operation, software-level techniques cannot detect malicious behavior of the firmware. In this work, we propose ConFirm, a low-cost technique to detect malicious modifications in the firmware of embedded control systems by measuring the number of low-level hardware events that occur during the execution of the firmware. In order to count these events, ConFirm leverages the Hardware Performance Counters (HPCs), which readily exist in many embedded processors. We evaluate the detection capability and performance overhead of the proposed technique on various types of firmware running on ARM- and PowerPC-based embedded processors. Experimental results demonstrate that ConFirm can detect all the tested modifications with low performance overhead.

76 citations

Proceedings ArticleDOI
01 Nov 2015
TL;DR: This paper presents how an adversary is able to disrupt the operation of Circuit Breakers by injecting malicious tripping commands to the relay controller by reverse engineering the firmware of an existing commercial protection relay.
Abstract: The coupling between cyber and physical components makes cyber-security an area of growing interest in the power industry. Sensing, communications, and intelligent control technologies are being integrated with field devices, changing the traditional structure of power systems and transforming power infrastructure into a more interactive, dynamic and controllable system. As a result, the developed smart grid environment increases the chances of being maliciously attacked. Monitoring and control decision equipment such as microprocessor-based protection relays, offer an ideal exploitation candidate for attackers. This paper presents how an adversary is able to disrupt the operation of Circuit Breakers (CBs) by injecting malicious tripping commands to the relay controller. We formulate an attack strategy by reverse engineering the firmware of an existing commercial protection relay. The impact of the developed attacks is studied on the IEEE 14 bus test case system.

63 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A unique taxonomy is provided, which sheds the light on IoT vulnerabilities, their attack vectors, impacts on numerous security objectives, attacks which exploit such vulnerabilities, corresponding remediation methodologies and currently offered operational cyber security capabilities to infer and monitor such weaknesses.
Abstract: The security issue impacting the Internet-of-Things (IoT) paradigm has recently attracted significant attention from the research community. To this end, several surveys were put forward addressing various IoT-centric topics, including intrusion detection systems, threat modeling, and emerging technologies. In contrast, in this paper, we exclusively focus on the ever-evolving IoT vulnerabilities. In this context, we initially provide a comprehensive classification of state-of-the-art surveys, which address various dimensions of the IoT paradigm. This aims at facilitating IoT research endeavors by amalgamating, comparing, and contrasting dispersed research contributions. Subsequently, we provide a unique taxonomy, which sheds the light on IoT vulnerabilities, their attack vectors, impacts on numerous security objectives, attacks which exploit such vulnerabilities, corresponding remediation methodologies and currently offered operational cyber security capabilities to infer and monitor such weaknesses. This aims at providing the reader with a multidimensional research perspective related to IoT vulnerabilities, including their technical details and consequences, which is postulated to be leveraged for remediation objectives. Additionally, motivated by the lack of empirical (and malicious) data related to the IoT paradigm, this paper also presents a first look on Internet-scale IoT exploitations by drawing upon more than 1.2 GB of macroscopic, passive measurements’ data. This aims at practically highlighting the severity of the IoT problem, while providing operational situational awareness capabilities, which undoubtedly would aid in the mitigation task, at large. Insightful findings, inferences and outcomes in addition to open challenges and research problems are also disclosed in this paper, which we hope would pave the way for future research endeavors addressing theoretical and empirical aspects related to the imperative topic of IoT security.

451 citations

Journal ArticleDOI
TL;DR: An intensive summary of several detection algorithms for false data injection attacks by categorizing them and elaborating on the pros and cons of each category is provided.
Abstract: Cyber-physical attacks are the main substantial threats facing the utilization and development of the various smart grid technologies. Among these attacks, false data injection attack represents a main category with its widely varied types and impacts that have been extensively reported recently. In addressing this threat, several detection algorithms have been developed in the last few years. These were either model-based or data-driven algorithms. This paper provides an intensive summary of these algorithms by categorizing them and elaborating on the pros and cons of each category. The paper starts by introducing the various cyber-physical attacks along with the main reported incidents in history. The significance and the impacts of the false data injection attacks are then reported. The concluding remarks present the main criteria that should be considered in developing future detection algorithms for the false data injection attacks.

362 citations

Journal ArticleDOI
TL;DR: A survey of systems and control methods proposed for the security of Cyber-Physical Systems, a field that has recently garnered increased attention, classifies these methods into three categories based on the type of defense proposed against the cyberattacks: prevention, resilience, and detection & isolation.

312 citations