scispace - formally typeset
Search or ask a question
Author

Charalampos Kouris

Bio: Charalampos Kouris is an academic researcher from University of Patras. The author has contributed to research in topics: Pipe flow & Two-phase flow. The author has an hindex of 7, co-authored 7 publications receiving 216 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a pseudo-spectral numerical method is coupled with an implicit second order timeintegration scheme to solve the complete mass and momentum conservation equations as an initial value problem.
Abstract: Nonlinear dynamics of the concentric, two-phase flow of two immiscible fluids in a circular tube is studied. The viscosity of the fluid around the axis of symmetry of the tube is larger than the viscosity of the fluid that surrounds it and gravity acts against the applied pressure gradient. A pseudo-spectral numerical method is coupled with an implicit second order time-integration scheme to solve the complete mass and momentum conservation equations as an initial value problem. The simulations originate with the analytical solution for the pressure driven, steady, core-annular flow (CAF) in a tube. In order to replicate as closely as possible the experimental conditions reported by Bai, Chen and Joseph (1992), the volume fraction of each fluid in the tube and the total flow rate of both fluids are imposed. Furthermore, the length of the tube is taken to be as long as computationally possible in order to allow for multiple waves of different lengths to develop and interact as reported in the experiments and in earlier weakly nonlinear analyses. Having performed simulations of CAF for conditions under which the reported flow charts indicate that both phases retain their integrity but the original steady flow is unstable, it was found that indeed traveling waves develop with slightly sharper crests (pointing towards the annular fluid) than troughs, the so-called “bamboo waves.” Despite the uneven interface, the flow in the core fluid closely resembles Poiseuille flow, but in the annular fluid small recirculation zones develop at the level of each crest. As the Reynolds number or the flow rate of the core fluid increase, the average wavelength and the amplitude of these waves decrease, whereas the holdup ratio of the core to the annular fluid approaches two. Their specific values for each examined case are in closer agreement with the experiments than in earlier theoretical reports. For large values of interfacial tension, waves with even different wavelength move with the same velocity, whereas for small values, they attain variable velocities and approach or repel each other but no wave merging or splitting is observed.

75 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the nonlinear dynamics of the concentric, two-phase flow of two immiscible fluids in a circular tube, where the viscosity ratio of the fluid in the annulus to that in the core of the tube, μ, is larger than or equal to unity.
Abstract: The nonlinear dynamics of the concentric, two-phase flow of two immiscible fluids in a circular tube is studied when the viscosity ratio of the fluid in the annulus to that in the core of the tube, μ, is larger than or equal to unity. For these values of the viscosity ratio the perfect core-annular flow (CAF) is linearly unstable and it is necessary to keep the ratio of the thickness of the annulus to the radius of the tube small so that the solutions remain uniformly bounded. The simulations are based on a pseudospectral numerical method while special care has been taken in order to minimize as far as possible the effect of the boundary conditions imposed in the axial direction allowing for multiple waves of different lengths to develop and interact. The time integration originates with the analytical solution for the pressure driven, perfect CAF or the perfect CAF seeded with either the most unstable mode or random disturbances. Quite regular wave patterns are predicted in the first two cases, whereas m...

55 citations

Journal ArticleDOI
TL;DR: In this article, a two-phase flow of two immiscible fluids in a tube of sinusoidally varying cross-section is studied and the Arnoldi algorithm has been implemented for computing the most critical eigenvalues that correspond to axisymmetric disturbances.
Abstract: The concentric, two-phase flow of two immiscible fluids in a tube of sinusoidally varying cross-section is studied. This geometry is often used as a model to study the onset of different flow regimes in packed beds. Neglecting gravitational effects, the model equations depend on five dimensionless parameters: the Reynolds and Weber numbers, and the ratios of density, viscosity and volume of the two fluids. Two more dimensionless numbers describe the shape of the solid wall: the constriction ratio and the ratio of its maximum radius to its period. In addition to the effect of the Weber number, which depends on both the fluid and the flow, the effect of the Ohnesorge number J has been examined as it characterizes the fluid alone. The governing equations are approximated using the pseudo-spectral methodology while the Arnoldi algorithm has been implemented for computing the most critical eigenvalues that correspond to axisymmetric disturbances. Stationary solutions are obtained for a wide parameter range, which may exhibit flow recirculation at the expanding portion of the tube. Extensive calculations are made for the dependence of the neutral stability boundaries on the various parameters. In most cases where the steady solution becomes unstable it does so through a Hopf bifurcation. Exceptions to this are cases where the viscosity ratio is O(10−3) and, then, the most unstable eigenvalue remains real. Generally, steady core–annular flow in this geometry is more susceptible to instability than in a straight tube and, in similar ranges of the parameters, it may be generated by different mechanisms. Decreasing the thickness of the annular fluid, inverse Weber number or the Ohnesorge number or the density of the core fluid stabilizes the flow. For stability reasons, the viscosity ratio must remain strictly below unity and it has an optimum value that maximizes the range of allowed Reynolds numbers.

26 citations

Journal ArticleDOI
TL;DR: In this article, a two-phase flow of two immiscible fluids in a tube of sinusoidally varying cross section is studied, where the tube radius is much smaller than the period of the constriction, the Navier-Stokes equations in each phase are simplified accordingly.

21 citations

Journal ArticleDOI
TL;DR: Looking at the generation of spurious currents around a stationary ''bubble'' in the tube for Ohnesorge numbers between 0.1 and 10 it is found that the maximum velocity remains approximately the same in spite mesh refinements when VT is applied, whereas it is of the same order of magnitude for the coarsest mesh and monotonically decreases with mesh refinement when FT is applied.

19 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the fundamental and technological aspects of these subjects can be found in this article, where the focus is mainly on surface tension effects, which result from the cohesive properties of liquids Paradoxically, cohesive forces promote the breakup of jets, widely encountered in nature, technology and basic science.
Abstract: Jets, ie collimated streams of matter, occur from the microscale up to the large-scale structure of the universe Our focus will be mostly on surface tension effects, which result from the cohesive properties of liquids Paradoxically, cohesive forces promote the breakup of jets, widely encountered in nature, technology and basic science, for example in nuclear fission, DNA sampling, medical diagnostics, sprays, agricultural irrigation and jet engine technology Liquid jets thus serve as a paradigm for free-surface motion, hydrodynamic instability and singularity formation leading to drop breakup In addition to their practical usefulness, jets are an ideal probe for liquid properties, such as surface tension, viscosity or non-Newtonian rheology They also arise from the last but one topology change of liquid masses bursting into sprays Jet dynamics are sensitive to the turbulent or thermal excitation of the fluid, as well as to the surrounding gas or fluid medium The aim of this review is to provide a unified description of the fundamental and the technological aspects of these subjects

1,583 citations

Journal ArticleDOI
TL;DR: A comprehensive review of numerical methods and models for interface resolving simulations of multiphase flows in microfluidics and micro process engineering is presented in this paper, where three common approaches in the sharp interface limit, namely the volume-of-fluid method with interface reconstruction, the level set method and the front tracking method, as well as methods with finite interface thickness such as color function based methods and the phase-field method are discussed.
Abstract: This article presents a comprehensive review of numerical methods and models for interface resolving simulations of multiphase flows in microfluidics and micro process engineering. The focus of the paper is on continuum methods where it covers the three common approaches in the sharp interface limit, namely the volume-of-fluid method with interface reconstruction, the level set method and the front tracking method, as well as methods with finite interface thickness such as color-function based methods and the phase-field method. Variants of the mesoscopic lattice Boltzmann method for two-fluid flows are also discussed, as well as various hybrid approaches. The mathematical foundation of each method is given and its specific advantages and limitations are highlighted. For continuum methods, the coupling of the interface evolution equation with the single-field Navier–Stokes equations and related issues are discussed. Methods and models for surface tension forces, contact lines, heat and mass transfer and phase change are presented. In the second part of this article applications of the methods in microfluidics and micro process engineering are reviewed, including flow hydrodynamics (separated and segmented flow, bubble and drop formation, breakup and coalescence), heat and mass transfer (with and without chemical reactions), mixing and dispersion, Marangoni flows and surfactants, and boiling.

378 citations

Journal ArticleDOI
TL;DR: In this article, a review highlights the profound and unexpected ways in which viscosity varying in space and time can affect flow and the most striking manifestations are through alterations of flow stability, as established in model shear flows and industrial applications.
Abstract: This review highlights the profound and unexpected ways in which viscosity varying in space and time can affect flow. The most striking manifestations are through alterations of flow stability, as established in model shear flows and industrial applications. Future studies are needed to address the important effect of viscosity stratification in such diverse environments as Earth's core, the Sun, blood vessels, and the re-entry of spacecraft.

231 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of bottom topography on linear stability of turbulent flow over uneven surfaces was explored, with numerical solutions of the shallow-water equations complementing an asymptotic theory relevant near onset.
Abstract: Shallow-water equations with bottom drag and viscosity are used to study the dynamics of roll waves. First, we explore the effect of bottom topography on linear stability of turbulent flow over uneven surfaces. Low-amplitude topography is found to destabilize turbulent roll waves and lower the critical Froude number required for instability. At higher amplitude, the trend reverses and topography stabilizes roll waves. At intermediate topographic amplitude, instability can be created at much lower Froude numbers due to the development of hydraulic jumps in the equilibrium flow. Second, the nonlinear dynamics of the roll waves is explored, with numerical solutions of the shallow-water equations complementing an asymptotic theory relevant near onset. We find that trains of roll waves undergo coarsening due to waves overtaking one another and merging, lengthening the scale of the pattern. Unlike previous investigations, we find that coarsening does not always continue to its ultimate conclusion (a single roll wave with the largest spatial scale). Instead, coarsening becomes interrupted at intermediate scales, creating patterns with preferred wavelengths. We quantify the coarsening dynamics in terms of linear stability of steady roll-wave trains.

146 citations