scispace - formally typeset
Search or ask a question

Showing papers by "Charles A. Dinarello published in 2022"


Journal ArticleDOI
01 Feb 2022-Cytokine
TL;DR: In this article, the role of anti-inflammatory members of the IL-1 family of cytokines (IL-1F) which interfere with the inflammatory process has been discussed, with the potential to regulate the induction of a trained phenotype.

18 citations


Journal ArticleDOI
24 Feb 2022-Cytokine
TL;DR: The IL-38 polymorphisms are associated with inflammatory disease and biomarkers thereof in animal models as mentioned in this paper , and the role of B cells in the biology of IL38 remains elusive.

8 citations


Journal ArticleDOI
TL;DR: In this paper, a selective inhibitor of the NLRP3 inflammasome was used to reduce the contribution of IL-1β and IL-18 cytokines to spinal cord injury.

8 citations


Journal ArticleDOI
TL;DR: The data implicate endogenous IL-38 as an anti-inflammatory cytokine that reduces DSS colitis severity and propose that a relative deficiency of IL- 38 contributes to IBD by disinhibition of the NLRP3 inflammasome.
Abstract: IL-38 is a recently discovered cytokine and member of the IL-1 Family. In the IL-1 Family, IL-38 is unique because the cytokine is primarily a B lymphocyte product and functions to suppress inflammation. Studies in humans with inflammatory bowel disease (IBD) suggest that IL-38 may be protective for ulcerative colitis or Crohn’s disease, and that IL-38 acts to maintain homeostasis in the intestinal tract. Here we investigated the role of endogenous IL-38 in experimental colitis in mice deficient in IL-38 by deletion of exons 1-4 in C57 BL/6 mice. Compared to WT mice, IL-38 deficient mice subjected to dextran sulfate sodium (DSS) showed greater severity of disease, more weight loss, increased intestinal permeability, and a worse histological phenotype including increased neutrophil influx in the colon. Mice lacking IL-38 exhibited elevated colonic Nlrp3 mRNA and protein levels, increased caspase-1 activation, and the concomitant increased processing of IL-1β precursor into active IL-1β. Expression of IL-1α, an exacerbator of IBD, was also upregulated. Colonic myleloperoxidase protein and Il17a, and Il17f mRNA levels were higher in the IL-38 deficient mice. Daily treatment of IL-38 deficient mice with an NLRP3 inhibitor attenuated diarrhea and weight loss during the recovery phase. These data implicate endogenous IL-38 as an anti-inflammatory cytokine that reduces DSS colitis severity. We propose that a relative deficiency of IL-38 contributes to IBD by disinhibition of the NLRP3 inflammasome.

8 citations


Journal ArticleDOI
TL;DR: In this paper , the role of the host nucleotide-binding domain, leucine-rich containing family, pyrin domain-containing 3 (NLRP3) inflammasome in metastatic breast cancer was demonstrated.
Abstract: Tumor-associated inflammation leads to dysregulated cytokine production that promotes tumor immune evasion and anti-tumor immunity dysfunction. In advanced stage breast cancer, the proinflammatory cytokine IL-1β is overexpressed due to large proportions of activated myeloid cells in the tumor microenvironment (TME). Here, we demonstrate the role of the host nucleotide-binding domain, leucine-rich containing family, pyrin domain-containing 3 (NLRP3) inflammasome in metastatic breast cancer. In vitro, we show that stimulation of THP-1 cells with conditioned media collected from MDA-MB-468 cells induced NLRP3 activation and increased Pdcd1l1 expression. In vivo, mice deficient in NLRP3 orthotopically implanted with metastatic breast cancer cell line (E0771) showed significant reduction in tumor growth (p < 0.05) and increased survival (p < 0.01). Inhibition of NLRP3 with the small molecule OLT1177® reduced expression of Pdcd1l1 (p < 0.001), Casp1 (p < 0.01) and Il1b (p < 0.01) in primary tumors. Furthermore, tumor-bearing mice receiving OLT1177® showed reduced infiltration of myeloid-derived suppressor cells (MDSCs) (p < 0.001) and increased CD8+ T cells (p < 0.05) and NK cells (p < 0.05) in the TME. NLRP3 inhibition in addition to anti-PD-1 treatment significantly reduced tumor growth from the monotherapies (p < 0.05). These data define NLRP3 activation as a key driver of immune suppression in metastatic breast cancers. Furthermore, this study suggests NLRP3 as a valid target to increase efficacy of immunotherapy with checkpoint inhibitor in metastatic breast cancers.

4 citations


Journal ArticleDOI
TL;DR: In this article , the authors investigated associations between IL-37 and markers of healthspan in 271 young (18-39 years; n = 41), middle-aged (40-64 years, n = 162), and older adults free of overt clinical disease.
Abstract: Aging is characterized by declines in physiological function that increase risk of age-associated diseases and limit healthspan, mediated in part by chronic low-grade inflammation. Interleukin (IL)-37 suppresses inflammation in pathophysiological states but has not been studied in the context of aging in otherwise healthy humans. Thus, we investigated associations between IL-37 and markers of healthspan in 271 young (18–39 years; n = 41), middle-aged (40–64 years; n = 162), and older (65 + years; n = 68) adults free of overt clinical disease. After conducting a thorough validation of AdipoGen’s IL-37 ELISA, we found that plasma IL-37 is lower in older adults (young: 339 ± 240, middle-aged: 345 ± 234; older: 258 ± 175 pg/mL; P = 0.048), despite elevations in pro-inflammatory markers. As such, the ratios of circulating IL-37 to pro-inflammatory markers were considerably lower in older adults (e.g., IL-37 to C-reactive protein: young, 888 ± 918 vs. older, 337 ± 293; P = 0.02), indicating impaired IL-37 responsiveness to a pro-inflammatory state with aging and consistent with the notion of immunosenescence. These ratios were related to multiple indicators of healthspan, including positively to cardiorespiratory fitness (P < 0.01) and negatively to markers of adiposity, blood pressure, and blood glucose (all P < 0.05). Lastly, we correlated single-nucleotide polymorphisms (SNPs) in the IL37 and ILR8 (the co-receptor for IL-37) genes and found that variants in IL37 SNPs tended to be associated with blood pressure and adiposity (P = 0.08–0.09) but did not explain inter-individual variability in circulating IL-37 concentrations across age (P ≥ 0.23). Overall, our findings provide novel insights into a possible role of IL-37 in biological aging in humans.

4 citations


Journal ArticleDOI
TL;DR: It is demonstrated that IL-38 suppresses spontaneous and stimulated osteogenic activity in aortic valve via inhibition of the NLRP3 inflammasome and caspase-1 and the findings suggest thatIL-38 has therapeutic potential for prevention of CAVD progression.
Abstract: Significance Calcific aortic valve disease (CAVD) is a common aging-related cardiovascular disease with no pharmacological therapy presently. CAVD pathobiology has chronic inflammation and progressive calcification in aortic valve leaflets. We found that aortic valve interstitial cells (AVICs) from CAVD valves have lower levels of the anti-inflammatory protein IL-38. Recombinant IL-38 reduces spontaneous calcium deposition in AVICs, as well as calcium deposition in AVICs from non-CAVD valves when subjected to pro-inflammatory stimulation. Mechanistically, IL-38 inhibits the NLRP3 inflammasome and suppresses the inflammatory and osteogenic activities in AVICs. Aged IL-38–deficient mice display aortic valve calcification when fed a high-fat diet. Thus, IL-38 suppresses inflammation to alleviate calcification in the aortic valve and may have therapeutic potential for prevention of CAVD progression.

4 citations


Journal ArticleDOI
TL;DR: Although IL-38 concentrations were markedly higher in Chinese then in European population studies, they could not show an association with the genetic background, and a reference range for circulating IL- 38 in healthy adults could thus not be established.
Abstract: Interleukin (IL)-38 is the latest discovered member of the interleukin-1 family, which has anti-inflammatory properties similar to IL-36Ra. Several studies compared circulating IL-38 concentrations in healthy and diseased populations to characterize its role in both auto-immune and inflammatory pathologies, with both higher and lower concentrations being associated with certain diseases. However, in order to use IL-38 as a biomarker, a reference range in healthy adults is needed. To establish a reference IL-38 circulating concentration, accessible data from 25 eligible studies with IL-38 concentrations in healthy adults was collected. To validate the values found in literature, we measured IL-38 concentrations by enzyme-linked immunosorbent assay (ELISA) in several cohorts from our own institute. Additionally, the effect of blood collection techniques, freeze thawing cycles, and hemolysis on IL-38 measurements was assessed. To evaluate the importance of the genetic background of individuals as confounding factor of IL-38 synthesis, we used publicly available eQTL databases with matched data on allele frequencies in individuals of different ethnicities. Mean IL-38 concentrations in the various studies were weighted by their corresponding sample size, resulting in a weighted mean, and weighted upper and lower limits were calculated by mean ± 2 SD. Differences of over 10.000-fold were found in the weighted means between studies, which could not be attributed to the blood collection method or assessment of IL-38 in plasma or serum. Although IL-38 concentrations were markedly higher in Chinese then in European population studies, we could not show an association with the genetic background. From our analysis, a reference range for circulating IL-38 in healthy adults could thus not yet be established.

2 citations


Journal ArticleDOI
TL;DR: This work uses a combination of biophysical and biochemical studies to reveal the dynamic behavior and functional interactions of a panel of both bacterial TIR-containing proteins and mammalian receptor TIR domains, and provides the first atomic-resolution studies of a bacterial coil-coil domain and a human anti-inflammatory IL-1R8 protein that undergoes a slow inherent exchange.
Abstract: Toll-interleukin receptor (TIR) domains have emerged as critical players involved in innate immune signaling in humans but are also expressed as potential virulence factors within multiple pathogenic bacteria. However, there has been a shortage of structural studies aimed at elucidating atomic resolution details with respect to their interactions, potentially owing to their dynamic nature. Here, we used a combination of biophysical and biochemical studies to reveal the dynamic behavior and functional interactions of a panel of both bacterial TIR-containing proteins and mammalian receptor TIR domains. Regarding dynamics, all three bacterial TIR domains studied here exhibited an inherent exchange that led to severe resonance line-broadening, revealing their intrinsic dynamic nature on the intermediate NMR timescale. In contrast, the three mammalian TIR domains studied here exhibited a range in terms of their dynamic exchange that spans multiple timescales. Functionally, only the bacterial TIR domains were catalytic towards the cleavage of NAD+, despite the conservation of the catalytic nucleophile on human TIR domains. Our development of NMR-based catalytic assays allowed us to further identify differences in product formation for gram-positive versus gram-negative bacterial TIR domains. Differences in oligomeric interactions were also revealed, whereby bacterial TIR domains self-associated solely through their attached coil-coil domains, in contrast to the mammalian TIR domains that formed homodimers and heterodimers through reactive cysteines. Finally, we provide the first atomic-resolution studies of a bacterial coil-coil domain and provide the first atomic model of the TIR domain from a human anti-inflammatory IL-1R8 protein that undergoes a slow inherent exchange.

1 citations



Journal ArticleDOI
TL;DR: In this article , the impact of chronic IL-1β on functional and metabolic properties of Tet2-deficient HSPC was investigated using a non-conditioned adoptive transfer CH model.

Journal ArticleDOI
TL;DR: It is shown that there is an exhausted immune microenvironment in aging lungs, that inflammation contributes to the increased tumor initiation, and that decreasing inflammation could decrease the lung tumor incidence by reactivating the immune system.
Abstract: Aging is a major risk factor in increased lung cancer incidence. While most research has focused on age-associated mutation accumulation to explain the late-life increase in cancer incidence, there are tissue environmental forces that both impede and promote cancer evolution. Just as organismal evolution is known to be driven by environmental changes, cellular (somatic) evolution in our bodies is similarly driven by changes in tissue environments. Environmental change promotes selection for new phenotypes that are adaptive to the new context. In our tissues, aging or insult-driven alterations in tissues drives selection for adaptive mutations, and some of these mutations can confer malignant phenotypes. Chronic, low-level inflammation has been associated with aging, termed inflammaging, yet how age-associated changes in lung tissue microenvironments contribute to increased lung cancer incidence has remained largely unknown. Since chronic inflammation has been shown to contribute to tumor development, we hypothesized that inflammaging contributes to increased oncogenic adaptation in the lung. Using either viral delivery of CRISPR constructs to mediate EML4-ALK translocations or ectopic expression of KRAS-G12D, we showed increased adenoma formation in old mice. Importantly, in the EML4-ALK model, we showed that the overexpression of alpha-1 antitrypsin (AAT) in old mice resulted in lower adenoma counts compared to their old wild type counterparts. Flow cytometric analysis of immune cells isolated from bronchoalveolar fluid of young and old mice showed an altered immune landscape, such as increased neutrophils, gamma delta T cells, and Foxp3+ regulatory T cells. Furthermore, analysis of the single-cell RNAseq data from Tabula Muris Consortium demonstrated increased exhaustion markers in the CD8+ T cells and regulatory T cells. Separately, Gene Set Enrichment Analysis (GSEA) of the differential gene expressions of lung epithelial cells isolated from young and old mice revealed enriched pathways related to immune activation and inflammatory response, and immune-suppression markers. Lastly, bulk RNA-seq from lungs of young, old, and old mice overexpressing AAT revealed increased immune cell exhaustion markers and that the overexpression of AAT partially reversed this increase. Finally, analysis of Genotype-Tissue Expression (GTEx) data comparing gene expressions in lungs of young and old humans similarly showed enriched pathways related to immune activation and increased T cell exhaustion markers in the elderly. In addition, using deconvolution methods CiberSort and xCell, we demonstrated altered innate and adaptive immune cell populations, for example, increased neutrophils and regulatory T cells, that are associated with advanced age, similar to aging mice. In conclusion, we showed that there is an exhausted immune microenvironment in aging lungs, that inflammation contributes to the increased tumor initiation, and that decreasing inflammation could decrease the lung tumor incidence by reactivating the immune system. Citation Format: Shi Biao Chia, Catherine Pham-Danis, Hannah Scarborough, Nathaniel Little, Etienne P. Danis, Andrew E. Goodspeed, Charles Dinarello, James DeGregori. Altered immune landscape in aging lungs contributes to malignant evolution [abstract]. In: Proceedings of the AACR Special Conference on the Evolutionary Dynamics in Carcinogenesis and Response to Therapy; 2022 Mar 14-17. Philadelphia (PA): AACR; Cancer Res 2022;82(10 Suppl):Abstract nr A026.