scispace - formally typeset
Search or ask a question
Author

Charles A. Dinarello

Bio: Charles A. Dinarello is an academic researcher from University of Colorado Denver. The author has contributed to research in topics: Interleukin & Cytokine. The author has an hindex of 190, co-authored 1058 publications receiving 139668 citations. Previous affiliations of Charles A. Dinarello include University of Guadalajara & Pennsylvania State University.


Papers
More filters
Journal ArticleDOI
TL;DR: It is discovered that IL-32γ potentiates the Th1/Th17 immune response during experimental VL, thus contributing to the control of L. infantum infection.
Abstract: Visceral leishmaniasis (VL) is a chronic parasitic disease caused by Leishmania infantum in the Americas. During VL, several proinflammatory cytokines are produced in spleen, liver, and bone marrow. However, the role of interleukin-32 (IL-32) has not been explored in this disease. IL-32 can induce production of proinflammatory cytokines in innate immune cells and polarize the adaptive immune response. Herein, we discovered that L. infantum antigens induced expression of mRNA mainly for the IL-32γ isoform but also induced low levels of the IL-32β transcript in human peripheral blood mononuclear cells. Furthermore, infection of human IL-32γ transgenic mice (IL-32γTg mice) with L. infantum promastigote forms increased IL-32γ expression in the spleen and liver. Interestingly, IL-32γTg mice harbored less parasitism in the spleen and liver than wild-type (WT) mice. In addition, IL-32γTg mice showed increased granuloma formation in the liver compared to WT mice. The protection against VL was associated with increased production of nitric oxide (NO), interferon gamma (IFN-γ), IL-17A, and tumor necrosis factor alpha by splenic cells restimulated ex vivo with L. infantum antigens. In parallel, there was an increase in the number of Th1 and Th17 T cells in the spleens of IL-32γTg mice infected with L. infantum IL-32γ induction of IFN-γ and IL-17A expression was found to be essential for NO production by splenic cells of infected animals. These data indicate that IL-32γ potentiates the Th1/Th17 immune response during experimental VL, thus contributing to the control of L. infantum infection.

15 citations

Journal ArticleDOI
TL;DR: In this paper, the synthesis of IL-1β by peripheral blood mononuclear cells (PBMC) from 42 patients with primary biliary cirrhosis (PBC) entered into a randomized, double blind, double-dummy controlled trial of colchicine and methotrexate.

14 citations

Journal ArticleDOI
TL;DR: This overview examines the effect of intravenous Ig on the production and activity of IL-1 and its naturally occurring receptor antagonist (IL-lRa) and to what extent they contribute to the mechanism(s) of i.v.Ig in the treatment of diseases.
Abstract: Several mechanisms have been proposed to explain the effectiveness of i.v.Ig therapy in a variety of inflammatory and autoimmune diseases. This review focuses on the concept that reducing the production of interleukin-1 (IL-1) or blocking the activity of IL-1 results in a reduction in disease severity. More specifically, this overview examines the effect of intravenous Ig (i.v.Ig) on the production and activity of IL-1 and its naturally occurring receptor antagonist (IL-lRa). The discussion is limited to the biological effects of i.v.Ig prepared from a very large pool of human sera and not to those prepared from a smaller donor pool with high titers of specific antibodies, for example, high-titer i.v.Ig against cytomegalovirus or varicella. Several commercially available preparations of i.v.Ig contain neutralizing antibodies to IL-1 (Svenson et al. 1993). In vitro, i.v.Ig reduces the production of IL1 from stimulated monocytes (Shimozato et al. 1991) and enhances the production of IL-lRa (Poutsiaka et al. 1991). In humans, i.v.Ig increases the circulating levels of IL-lRa. However, it remains unclear whether the magnitude of these responses to i.v.Ig accounts for a sufficient reduction and/or blockade of IL-1 activity and to what extent they contribute to the mechanism(s) of i.v.Ig in the treatment of diseases. There are many biological and immunological activities of i.v.Ig which have been proposed to account for the benefit observed in a wide range of human diseases. These include the triggering of the Fc yRI and FcyRII on phagocytic and immunocompetent cells and the effects of various immunoglobulins present in the preparations. However, what is the connection between the administration of i.v.Ig and IL-1? Some experimental studies suggest that i.v.Ig suppresses the production of IL-1 in vitro (there is also suppression of tumor-necrosis factor

14 citations

Journal ArticleDOI
TL;DR: Experiments were performed to evaluate the suitability of using cultured heparinized blood for induction of tumor necrosis factor alpha and gamma interferon, two cytokines critical in AIDS pathogenesis, and to determine the extent to which responses can be reliably detected in subjects with low CD4 cell numbers.
Abstract: Measures of immune function have become increasingly important as endpoints in AIDS clinical trials, with respect to both modulation and reconstitution of immunity by experimental therapies. Measurement of immune function in this setting requires the development of robust analytic approaches suitable for the clinical laboratory. Experiments were performed to evaluate the suitability of using cultured heparinized (“whole”) blood for induction of tumor necrosis factor alpha (TNF-α) and gamma interferon (IFN-γ), two cytokines critical in AIDS pathogenesis. TNF-α expression ranged from 229 to 769 pg/ml in lipopolysaccharide (LPS)-stimulated cultures and was not detected in unstimulated cultures. IFN-γ expression ranged from 0 to 112,000 pg/ml in phytohemagglutinin A (PHA)-stimulated cultures and from 0 to 789 pg/ml in antigen-stimulated cultures. The mean coefficient of variation observed in three weekly determinations was 0.47 for TNF-α and ranged from 0.12 to 1.73 for IFN-γ. These values indicate that sample sizes of 8, 24, and 29 subjects would be sufficient to detect twofold changes in LPS-induced TNF-α and in PHA- and antigen-induced IFN-γ, respectively, if two baseline and two treatment determinations were obtained, and if the interpatient variability of changes in true levels from baseline to follow-up is negligible compared to the variability in the three weekly measurements. Measurement of LPS-induced TNF-α and mitogen- or antigen-induced IFN-γ can be performed simply and reproducibly in human immunodeficiency virus-infected persons by the whole-blood culture method. Further studies are warranted to determine the effect of overnight shipping on assay reproducibility and to determine the extent to which responses can be reliably detected in subjects with low CD4 cell numbers.

14 citations

Journal ArticleDOI
TL;DR: In neutrophil-dominated airway environments, such as that seen in CF, reduced LKLF activity releases a brake on pro-inflammatory cytokine production and thereby may contribute to the persistent inflammatory responses seen inCF airway disease.
Abstract: This is the first report to describe a role for Lung Kruppel-like Factor (LKLF or KLF2) in inflammatory airways diseases. In the present study, we identify that LKLF is constitutively expressed in the small airways of normal lungs; however, its expression disappears in severe airway diseases, such as cystic fibrosis (CF) and chronic obstructive pulmonary disease. LKLF from primary airway epithelial cells inhibits NF-kappaB-driven transcription induced by Pseudomonas aeruginosa 7-fold, but is down-regulated in the presence of TNF-alpha and activated human neutrophils. As a constitutively expressed protein, LKLF inhibits release of a key pro-inflammatory chemokine, IL-8, from airway epithelia. Its expression by lung epithelial cells is enhanced in the presence of TNF blockade. Thus, cytokine-mediated inhibition of LKLF by neutrophils may contribute to ongoing recruitment by promoting IL-8 release from airway epithelia. We conclude that, in neutrophil-dominated airway environments, such as that seen in CF, reduced LKLF activity releases a brake on pro-inflammatory cytokine production and thereby may contribute to the persistent inflammatory responses seen in CF airway disease.

14 citations


Cited by
More filters
Journal ArticleDOI
01 Jun 1992-Chest
TL;DR: An American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference was held in Northbrook in August 1991 with the goal of agreeing on a set of definitions that could be applied to patients with sepsis and its sequelae as mentioned in this paper.

12,583 citations

Journal ArticleDOI
29 Apr 1993-Nature
TL;DR: The ability to control the expression of genes encoding these molecules and to target specific cell types provides opportunities to develop new diagnostic and therapeutic agents to induce the regression of the lesions and, possibly, to prevent their formation.
Abstract: Atherosclerosis, the principal cause of heart attack, stroke and gangrene of the extremities, is responsible for 50% of all mortality in the USA, Europe and Japan. The lesions result from an excessive, inflammatory-fibroproliferative response to various forms of insult to the endothelium and smooth muscle of the artery wall. A large number of growth factors, cytokines and vasoregulatory molecules participate in this process. Our ability to control the expression of genes encoding these molecules and to target specific cell types provides opportunities to develop new diagnostic and therapeutic agents to induce the regression of the lesions and, possibly, to prevent their formation.

10,861 citations

Journal ArticleDOI
24 Jul 2008-Nature
TL;DR: The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.
Abstract: The mediators and cellular effectors of inflammation are important constituents of the local environment of tumours. In some types of cancer, inflammatory conditions are present before a malignant change occurs. Conversely, in other types of cancer, an oncogenic change induces an inflammatory microenvironment that promotes the development of tumours. Regardless of its origin, 'smouldering' inflammation in the tumour microenvironment has many tumour-promoting effects. It aids in the proliferation and survival of malignant cells, promotes angiogenesis and metastasis, subverts adaptive immune responses, and alters responses to hormones and chemotherapeutic agents. The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.

9,282 citations

Journal ArticleDOI
TL;DR: An update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008 is provided.
Abstract: Objective:To provide an update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008.Design:A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at ke

9,137 citations

Journal ArticleDOI
19 Dec 2002-Nature
TL;DR: The new appreciation of the role of inflammation in atherosclerosis provides a mechanistic framework for understanding the clinical benefits of lipid-lowering therapies and unravelling the details of inflammatory pathways may eventually furnish new therapeutic targets.
Abstract: Abundant data link hypercholesterolaemia to atherogenesis. However, only recently have we appreciated that inflammatory mechanisms couple dyslipidaemia to atheroma formation. Leukocyte recruitment and expression of pro-inflammatory cytokines characterize early atherogenesis, and malfunction of inflammatory mediators mutes atheroma formation in mice. Moreover, inflammatory pathways promote thrombosis, a late and dreaded complication of atherosclerosis responsible for myocardial infarctions and most strokes. The new appreciation of the role of inflammation in atherosclerosis provides a mechanistic framework for understanding the clinical benefits of lipid-lowering therapies. Identifying the triggers for inflammation and unravelling the details of inflammatory pathways may eventually furnish new therapeutic targets.

7,858 citations